Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New system for detection of single atoms

19.05.2009
Records photon bursts from optical cavity

Scientists have devised a new technique for real-time detection of freely moving individual neutral atoms that is more than 99.7% accurate and sensitive enough to discern the arrival of a single atom in less than one-millionth of a second, about 20 times faster than the best previous methods.

The system, described in Advance Online Publication at the Nature Physics web site by researchers at the Joint Quantum Institute (JQI) in College Park, MD, and the Universidad de Concepción in Chile, employs a novel means of altering the polarization of laser light trapped between two highly-reflective mirrors, in effect letting the scientists "see" atoms passing through by the individual photons that they scatter.

The ability to detect single atoms and molecules is essential to progress in many areas, including quantum information research, chemical detection and biochemical analysis.

"Existing protocols have been too slow to detect moving atoms, making it difficult to do something to them before they are gone. Our work relaxes that speed constraint," says coauthor David Norris of JQI. "Moreover, it is hard to distinguish between a genuine detection and a random 'false positive' without collecting data over a large period of time. Our system both filters the signal and reduces the detection time."

The scientists trap and cool a small population of atoms (rubidium is used in the current experiment) in a vacuum enclosure in such a way that they drop slowly, one at a time, through a hole 1.5 millimeters wide at the bottom of the trap. The atom then falls about 8 centimeters until it enters a tiny chamber, or cavity, that is fitted on opposite sides with highly reflective mirrors that face one another at a distance of about 2 millimeters. Passing through the center of both mirrors is a laser beam of wavelength 780 nanometers – just slightly longer than visible red light. The beam excites the atom as it falls between the mirrors, causing it to reradiate the light in all directions.

That arrangement is a familiar one for labs studying the interaction of atoms and photons. The JQI system, however, has two distinctively unique features.

First, the researchers use two polarizations of cavity light simultaneously: one (horizontal) which is pumped in to efficiently excite the atoms, and the other (vertical) which only appears when emitted by an atom inside the cavity. Although the descent of the atom through the chamber takes only 5 millionths of a second, that is 200 times longer than it takes for the atom to become excited and shed a photon, so this process can happen multiple times before the atom is gone.

Second, they create a magnetic field inside the cavity, which causes the laser light polarization to rotate slightly when an atom is present. Known as the Faraday effect, this phenomenon is typically very weak when observed with a single atom. However, since the light reflecting between the mirrors passes by the atom about 10,000 times, the result is a much larger rotation of a few degrees. This puts significantly more of the laser light into the vertical polarization, making the atoms easier to "see."

The light eventually escapes from the cavity and is fed through a polarizing beamsplitter which routes photons with horizontal polarization to one detector, and vertical polarization to another. Each arriving photon generates a unique time stamp whenever it triggers its detector.

Although the detector for the vertically polarized light should only be sensitive to light coming from an atom in the cavity, it can be fooled occasionally by stray light in the room. But because there are multiple emissions from each atom, there will be a burst of photons whenever an atom passes between the mirrors. This is the signature that the researchers use to confirm an atom detection.

"The chief difficulty lies in verifying that our detector is really sensitive enough to see single atoms, and not just large groups of them," says team leader Luis A. Orozco of JQI. "Fortunately, the statistics of the light serve as a fingerprint for single-atom emission, and we were able to utilize that information in our system."

The Joint Quantum Institute is a research partnership between the University of Maryland and the National Institute of Standards and Technology, with additional support and participation of the Laboratory for Physical Sciences. This research was conducted with support from the National Science Foundation and the National Institute of Standards and Technology.

* "Photon Burst Detection of Single Atoms in an Optical Cavity," M.L. Terraciano, R. Olson Knell, D.G. Norris, J. Jing, A. Fernandez and L.A. Orozco, http://www.nature.com/nphys/index.html, DOI 10.1038/NPHYS1282.

Luis Orozco | EurekAlert!
Further information:
http://www.umd.edu
http://www.nature.com/nphys/index.html, DOI 10.1038/NPHYS1282

More articles from Physics and Astronomy:

nachricht First direct observation and measurement of ultra-fast moving vortices in superconductors
20.07.2017 | The Hebrew University of Jerusalem

nachricht Manipulating Electron Spins Without Loss of Information
19.07.2017 | Universität Basel

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>