Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Swinging of a single atom

17.12.2009
Real time optoelectronic feedback stabilizes the orbit of a moving atom

A father pushing his little child on a swing realizes a complex feedback procedure: the signal of the approaching swing is processed in his brain and actuated by his arms pushing with the right power and at the right moment.


Figure: Artist\'s view of the feedback scheme: A single atom placed between two highly reflecting mirrors reveals information about its position by emitting single photons (yellow wave packets). These photons are converted into digital electrical pulses (yellow spheres) and processed in an electronic feedback circuit. The circuit emits an electric current (blue spheres), which alters the intensity of a blue laser (blue valley). This feedback loop swings the atom depending on its measured position. MPQ-Quantum Dynamics

The fast feedback logic developed by a team of scientists around Prof. Gerhard Rempe, Director at the Max Planck Institute of Quantum Optics and head of the Quantum Dynamics Division, works quite similar: the system reacts, in real time, on the motion of a single atom orbiting in an optical cavity (Nature, N° 2009-08-10110A, DOI: 10.1038/nature08563).

Individual photons emitted by the atom and carrying information about the atomic position trigger a feedback mechanism that pushes the atom in a direction determined by the experimentalist. This allows him to control the motion of the atom. It increases the time the atom spends in the cavity by a factor of four, but is - even more important - a step towards the exploration of the quantum trajectory of a single atom at a level allowed by Heisenberg's position-momentum uncertainty relation.

The experiment starts by cooling a dilute cloud of neutral rubidium atoms with laser light down to a temperature of a few microkelvin. The cold cloud is then launched - like a fountain - towards a high-finesse optical resonator, made of two highly reflecting mirrors separated by about one tenth of a millimeter. Upon arrival in the resonator, one single atom is captured by suddenly turning on optical tweezers in form of a focused standing laser light wave reflected back and fro between the mirrors. As the trapped atom is sensitive to a variety of different forces, its motion consists of a regular oscillation around the resonator axis superimposed by a strong erratic motion in all directions. This makes the trajectory of the atom unpredictable on time scales not much longer than the oscillation period, typically less than a thousandth of a second.

Now a second laser comes into play that is used as the input signal of the feedback loop. It probes the position of the atom: if no atom is in the resonator, the light of this laser is fully transmitted through both mirrors. If an atom is placed in the center of the resonator the light is blocked and the photon flux drops to rates as low as 0.03 photons per millionth of a second. When the atom moves away from the resonator axis, trying to leave the resonator, more light is transmitted. The position of the atom is thus encoded in the intensity of the transmitted light. To read this information, the photons leaving the resonator are registered by a sensitive detector for two consecutive time intervals of equal duration, the so-called exposure time.

In case more photons are detected in the second time interval than in the first time interval, it is concluded that the atom is trying to escape the resonator. To prevent this, the light intensity of the optical tweezers is ramped up, pushing the atom back to the resonator axis. In case fewer photons are detected in the second time interval, the atom is assumed to approach the cavity axis and the power of the optical tweezers is lowered. This reduces the energy of the atom and leads to an efficient cooling of the atom. The atom can also be heated by inverting the feedback logic. This rapidly expels the atom out of the resonator. "It is important to note that the feedback is triggered by each detected photon. If the number of detected photons goes up from 0 to 1, the intensity of the optical tweezers is ramped up almost immediately, in a time interval that is 70 times shorter than the oscillation period of the atom", Alexander Kubanek, PhD student in the Quantum Dynamics Division explains. "Actually, we have to pay attention that the exposure time is neither too short nor too long", he specifies. "For very short times the information about the position of the atom is insufficient to trigger the desired feedback. If on the other hand the exposure times are too long, the feedback is delayed, leading to a reaction out-of-phase with the atomic oscillatory motion. So we have to choose exposure times that are long enough to give information on the position of the atom, but are yet much shorter than the oscillation period of the atom in the optical tweezers."

The feedback mechanism increases the storage time for a single atom from about six milliseconds without feedback to 24 milliseconds with feedback. Longer storage times exceeding 250 milliseconds are achieved by a more sophisticated technique. But more important than the mere prolongation of the storage times are the quantum mechanical implications of the experiment. "It proves that reliable position information can be obtained by quasi-continuous measurements", Prof. Gerhard Rempe points out. "In the future this might allow us to steer an individual quantum trajectory with a precision ultimately determined by Heisenberg's uncertainty relation or even protect the quantum state of a trapped particle against the disastrous influence of fluctuations stemming from the atom's environment." [Olivia Meyer-Streng]

Original publication:
A. Kubanek, M. Koch, C. Sames, A. Ourjoumtsev, P.W.H. Pinkse, K. Murr, G. Rempe
Photon-by-photon feedback control of a single-atom trajectory
Nature, N° 2009-08-10110A, DOI 10.1038/nature08563, 17.12.2009
Contact:
Prof. Dr. Gerhard Rempe
Max Planck Institute of Quantum Optics
Hans-Kopfermann-Straße 1
85748 Garching
Phone: +49 (0)89 / 32905 - 701
Fax: +49 (0)89 / 32905 - 311
e-mail: gerhard.rempe@mpq.mpg.de
Alexander Kubanek
Max Planck Institute of Quantum Optics
Phone: +49 (0)89 / 32905 - 296
Fax: +49 (0)89 / 32905 - 395
e-mail: alexander.kubanek@mpq.mpg.de
Dr. Olivia Meyer-Streng
Press & Public Relations Office
Max Planck Institute of Quantum Optics
Phone: +49 (0)89 / 32905 - 213
Fax: +49 (0)89 / 32905 - 200
e-mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Further information:
http://www.mpq.mpg.de

Further reports about: DOI Max Planck Institute Optic Quantum laser light optical tweezer single atom

More articles from Physics and Astronomy:

nachricht A tale of two pulsars' tails: Plumes offer geometry lessons to astronomers
18.01.2017 | Penn State

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>