Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Swinging of a single atom

17.12.2009
Real time optoelectronic feedback stabilizes the orbit of a moving atom

A father pushing his little child on a swing realizes a complex feedback procedure: the signal of the approaching swing is processed in his brain and actuated by his arms pushing with the right power and at the right moment.


Figure: Artist\'s view of the feedback scheme: A single atom placed between two highly reflecting mirrors reveals information about its position by emitting single photons (yellow wave packets). These photons are converted into digital electrical pulses (yellow spheres) and processed in an electronic feedback circuit. The circuit emits an electric current (blue spheres), which alters the intensity of a blue laser (blue valley). This feedback loop swings the atom depending on its measured position. MPQ-Quantum Dynamics

The fast feedback logic developed by a team of scientists around Prof. Gerhard Rempe, Director at the Max Planck Institute of Quantum Optics and head of the Quantum Dynamics Division, works quite similar: the system reacts, in real time, on the motion of a single atom orbiting in an optical cavity (Nature, N° 2009-08-10110A, DOI: 10.1038/nature08563).

Individual photons emitted by the atom and carrying information about the atomic position trigger a feedback mechanism that pushes the atom in a direction determined by the experimentalist. This allows him to control the motion of the atom. It increases the time the atom spends in the cavity by a factor of four, but is - even more important - a step towards the exploration of the quantum trajectory of a single atom at a level allowed by Heisenberg's position-momentum uncertainty relation.

The experiment starts by cooling a dilute cloud of neutral rubidium atoms with laser light down to a temperature of a few microkelvin. The cold cloud is then launched - like a fountain - towards a high-finesse optical resonator, made of two highly reflecting mirrors separated by about one tenth of a millimeter. Upon arrival in the resonator, one single atom is captured by suddenly turning on optical tweezers in form of a focused standing laser light wave reflected back and fro between the mirrors. As the trapped atom is sensitive to a variety of different forces, its motion consists of a regular oscillation around the resonator axis superimposed by a strong erratic motion in all directions. This makes the trajectory of the atom unpredictable on time scales not much longer than the oscillation period, typically less than a thousandth of a second.

Now a second laser comes into play that is used as the input signal of the feedback loop. It probes the position of the atom: if no atom is in the resonator, the light of this laser is fully transmitted through both mirrors. If an atom is placed in the center of the resonator the light is blocked and the photon flux drops to rates as low as 0.03 photons per millionth of a second. When the atom moves away from the resonator axis, trying to leave the resonator, more light is transmitted. The position of the atom is thus encoded in the intensity of the transmitted light. To read this information, the photons leaving the resonator are registered by a sensitive detector for two consecutive time intervals of equal duration, the so-called exposure time.

In case more photons are detected in the second time interval than in the first time interval, it is concluded that the atom is trying to escape the resonator. To prevent this, the light intensity of the optical tweezers is ramped up, pushing the atom back to the resonator axis. In case fewer photons are detected in the second time interval, the atom is assumed to approach the cavity axis and the power of the optical tweezers is lowered. This reduces the energy of the atom and leads to an efficient cooling of the atom. The atom can also be heated by inverting the feedback logic. This rapidly expels the atom out of the resonator. "It is important to note that the feedback is triggered by each detected photon. If the number of detected photons goes up from 0 to 1, the intensity of the optical tweezers is ramped up almost immediately, in a time interval that is 70 times shorter than the oscillation period of the atom", Alexander Kubanek, PhD student in the Quantum Dynamics Division explains. "Actually, we have to pay attention that the exposure time is neither too short nor too long", he specifies. "For very short times the information about the position of the atom is insufficient to trigger the desired feedback. If on the other hand the exposure times are too long, the feedback is delayed, leading to a reaction out-of-phase with the atomic oscillatory motion. So we have to choose exposure times that are long enough to give information on the position of the atom, but are yet much shorter than the oscillation period of the atom in the optical tweezers."

The feedback mechanism increases the storage time for a single atom from about six milliseconds without feedback to 24 milliseconds with feedback. Longer storage times exceeding 250 milliseconds are achieved by a more sophisticated technique. But more important than the mere prolongation of the storage times are the quantum mechanical implications of the experiment. "It proves that reliable position information can be obtained by quasi-continuous measurements", Prof. Gerhard Rempe points out. "In the future this might allow us to steer an individual quantum trajectory with a precision ultimately determined by Heisenberg's uncertainty relation or even protect the quantum state of a trapped particle against the disastrous influence of fluctuations stemming from the atom's environment." [Olivia Meyer-Streng]

Original publication:
A. Kubanek, M. Koch, C. Sames, A. Ourjoumtsev, P.W.H. Pinkse, K. Murr, G. Rempe
Photon-by-photon feedback control of a single-atom trajectory
Nature, N° 2009-08-10110A, DOI 10.1038/nature08563, 17.12.2009
Contact:
Prof. Dr. Gerhard Rempe
Max Planck Institute of Quantum Optics
Hans-Kopfermann-Straße 1
85748 Garching
Phone: +49 (0)89 / 32905 - 701
Fax: +49 (0)89 / 32905 - 311
e-mail: gerhard.rempe@mpq.mpg.de
Alexander Kubanek
Max Planck Institute of Quantum Optics
Phone: +49 (0)89 / 32905 - 296
Fax: +49 (0)89 / 32905 - 395
e-mail: alexander.kubanek@mpq.mpg.de
Dr. Olivia Meyer-Streng
Press & Public Relations Office
Max Planck Institute of Quantum Optics
Phone: +49 (0)89 / 32905 - 213
Fax: +49 (0)89 / 32905 - 200
e-mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Further information:
http://www.mpq.mpg.de

Further reports about: DOI Max Planck Institute Optic Quantum laser light optical tweezer single atom

More articles from Physics and Astronomy:

nachricht Applicability of dynamic facilitation theory to binary hard disk systems
08.12.2016 | Nagoya Institute of Technology

nachricht Will Earth still exist 5 billion years from now?
08.12.2016 | KU Leuven

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>