Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Swinging of a single atom

Real time optoelectronic feedback stabilizes the orbit of a moving atom

A father pushing his little child on a swing realizes a complex feedback procedure: the signal of the approaching swing is processed in his brain and actuated by his arms pushing with the right power and at the right moment.

Figure: Artist\'s view of the feedback scheme: A single atom placed between two highly reflecting mirrors reveals information about its position by emitting single photons (yellow wave packets). These photons are converted into digital electrical pulses (yellow spheres) and processed in an electronic feedback circuit. The circuit emits an electric current (blue spheres), which alters the intensity of a blue laser (blue valley). This feedback loop swings the atom depending on its measured position. MPQ-Quantum Dynamics

The fast feedback logic developed by a team of scientists around Prof. Gerhard Rempe, Director at the Max Planck Institute of Quantum Optics and head of the Quantum Dynamics Division, works quite similar: the system reacts, in real time, on the motion of a single atom orbiting in an optical cavity (Nature, N° 2009-08-10110A, DOI: 10.1038/nature08563).

Individual photons emitted by the atom and carrying information about the atomic position trigger a feedback mechanism that pushes the atom in a direction determined by the experimentalist. This allows him to control the motion of the atom. It increases the time the atom spends in the cavity by a factor of four, but is - even more important - a step towards the exploration of the quantum trajectory of a single atom at a level allowed by Heisenberg's position-momentum uncertainty relation.

The experiment starts by cooling a dilute cloud of neutral rubidium atoms with laser light down to a temperature of a few microkelvin. The cold cloud is then launched - like a fountain - towards a high-finesse optical resonator, made of two highly reflecting mirrors separated by about one tenth of a millimeter. Upon arrival in the resonator, one single atom is captured by suddenly turning on optical tweezers in form of a focused standing laser light wave reflected back and fro between the mirrors. As the trapped atom is sensitive to a variety of different forces, its motion consists of a regular oscillation around the resonator axis superimposed by a strong erratic motion in all directions. This makes the trajectory of the atom unpredictable on time scales not much longer than the oscillation period, typically less than a thousandth of a second.

Now a second laser comes into play that is used as the input signal of the feedback loop. It probes the position of the atom: if no atom is in the resonator, the light of this laser is fully transmitted through both mirrors. If an atom is placed in the center of the resonator the light is blocked and the photon flux drops to rates as low as 0.03 photons per millionth of a second. When the atom moves away from the resonator axis, trying to leave the resonator, more light is transmitted. The position of the atom is thus encoded in the intensity of the transmitted light. To read this information, the photons leaving the resonator are registered by a sensitive detector for two consecutive time intervals of equal duration, the so-called exposure time.

In case more photons are detected in the second time interval than in the first time interval, it is concluded that the atom is trying to escape the resonator. To prevent this, the light intensity of the optical tweezers is ramped up, pushing the atom back to the resonator axis. In case fewer photons are detected in the second time interval, the atom is assumed to approach the cavity axis and the power of the optical tweezers is lowered. This reduces the energy of the atom and leads to an efficient cooling of the atom. The atom can also be heated by inverting the feedback logic. This rapidly expels the atom out of the resonator. "It is important to note that the feedback is triggered by each detected photon. If the number of detected photons goes up from 0 to 1, the intensity of the optical tweezers is ramped up almost immediately, in a time interval that is 70 times shorter than the oscillation period of the atom", Alexander Kubanek, PhD student in the Quantum Dynamics Division explains. "Actually, we have to pay attention that the exposure time is neither too short nor too long", he specifies. "For very short times the information about the position of the atom is insufficient to trigger the desired feedback. If on the other hand the exposure times are too long, the feedback is delayed, leading to a reaction out-of-phase with the atomic oscillatory motion. So we have to choose exposure times that are long enough to give information on the position of the atom, but are yet much shorter than the oscillation period of the atom in the optical tweezers."

The feedback mechanism increases the storage time for a single atom from about six milliseconds without feedback to 24 milliseconds with feedback. Longer storage times exceeding 250 milliseconds are achieved by a more sophisticated technique. But more important than the mere prolongation of the storage times are the quantum mechanical implications of the experiment. "It proves that reliable position information can be obtained by quasi-continuous measurements", Prof. Gerhard Rempe points out. "In the future this might allow us to steer an individual quantum trajectory with a precision ultimately determined by Heisenberg's uncertainty relation or even protect the quantum state of a trapped particle against the disastrous influence of fluctuations stemming from the atom's environment." [Olivia Meyer-Streng]

Original publication:
A. Kubanek, M. Koch, C. Sames, A. Ourjoumtsev, P.W.H. Pinkse, K. Murr, G. Rempe
Photon-by-photon feedback control of a single-atom trajectory
Nature, N° 2009-08-10110A, DOI 10.1038/nature08563, 17.12.2009
Prof. Dr. Gerhard Rempe
Max Planck Institute of Quantum Optics
Hans-Kopfermann-Straße 1
85748 Garching
Phone: +49 (0)89 / 32905 - 701
Fax: +49 (0)89 / 32905 - 311
Alexander Kubanek
Max Planck Institute of Quantum Optics
Phone: +49 (0)89 / 32905 - 296
Fax: +49 (0)89 / 32905 - 395
Dr. Olivia Meyer-Streng
Press & Public Relations Office
Max Planck Institute of Quantum Optics
Phone: +49 (0)89 / 32905 - 213
Fax: +49 (0)89 / 32905 - 200

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Further information:

Further reports about: DOI Max Planck Institute Optic Quantum laser light optical tweezer single atom

More articles from Physics and Astronomy:

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

nachricht NASA team finds noxious ice cloud on saturn's moon titan
19.10.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>



Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

More VideoLinks >>>