Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Substantial undercooling brings about microstructural change for ternary eutectic alloy

11.02.2009
The Department of Applied Physics, Northwestern Polytechnical University (NPU) in Xi'an, China-Research, has shown that the substantial undercooling of liquid state brings about novel microstructural transition for Al-Cu-Si ternary eutectic alloy. The study is reported in Issue 54 (January, 2009) of Chinese Science Bulletin because of its significant research value.

Al¡VCu¡VSi alloy is widely applied in industry mainly as a light construction material. It is also a promising material for applications such as engine block and cylinder heads. It is important for designers to have an intimate knowledge of how Al¡VCu-Si alloy solidifies because its mechanical performance is usually controlled by solidification mechanism and microstructural characteristics. However, so far there has been little research on its rapid solidification mechanism under the extremely nonequilibrium condition.

In this work, Al80.4Cu13.6Si6 eutectic alloy was undercooled up to 147 K (0.18TE). Generally speaking, under the conventional solidification condition, a liquid aluminium alloy can be hardly undercooled because of oxidation. Dr. Ruan and Prof. Wei made it realized by choosing dehydrated B2O3 agent as a denucleating agent and providing a high-vacuum environment and special melting processing. In addition, the experimental parameters, such as cooling rate, superheating, and holding time, were controlled in order to get a wider undercooling range for comparison.

The undercooling level of alloy melt has a strong effect on its crystallization kinetics, structure morphology, and final physical and chemical properties. This study presents the microstructural characteristics of highly undercooled Al80.4Cu13.6Si6 ternary eutectic alloys. So far, most investigations on eutectic growth focus on binary alloy systems. The rapid solidification of undercooled ternary alloys involves the competitive nucleation and coupled growth of three eutectic phases from one liquid phase, which makes it more complicated than the case of binary alloys. The authors showed that the phase selection of Al80.4Cu13.6Si6 ternary eutectic alloy is influenced by undercooling, which makes the competitive nucleation and cooperative growth among Ą(Al), (Si) and ć(CuAl2) phases become more drastic. Once undercooling exceeds 73 K, the primary phase will transform from (Al) dendrite to faceted (Si) block.

"This paper emphasizes the phase selection and microstructure formation of substantially undercooled ternary eutectic alloys. The result is of academic and practical significance." said one journal reviewer. A series of papers about rapid solidification of ternary eutectic alloys written by Dr. Ruan and Prof. Wei have been published in Chin. Sci. Bull., Sci. Chin. G, etc. "It enriched and expanded the research results on nonequilibrium solidification. It offered us new references to develop solidification and nonequilibrium phase transition theory," said another reviewer.

The authors are affiliated at Laboratory of Space Materials Science and Technology (LMSS) of NPU. This laboratory is conducting research mainly in three respects: materials processing under the space simulation condition, thermophysical properties of undercooled liquid alloys, and computational material science.

Y Ruan, B Wei | EurekAlert!
Further information:
http://www.nwpu.edu.cn

More articles from Physics and Astronomy:

nachricht NASA's Fermi catches gamma-ray flashes from tropical storms
25.04.2017 | NASA/Goddard Space Flight Center

nachricht DGIST develops 20 times faster biosensor
24.04.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>