Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Substantial undercooling brings about microstructural change for ternary eutectic alloy

11.02.2009
The Department of Applied Physics, Northwestern Polytechnical University (NPU) in Xi'an, China-Research, has shown that the substantial undercooling of liquid state brings about novel microstructural transition for Al-Cu-Si ternary eutectic alloy. The study is reported in Issue 54 (January, 2009) of Chinese Science Bulletin because of its significant research value.

Al¡VCu¡VSi alloy is widely applied in industry mainly as a light construction material. It is also a promising material for applications such as engine block and cylinder heads. It is important for designers to have an intimate knowledge of how Al¡VCu-Si alloy solidifies because its mechanical performance is usually controlled by solidification mechanism and microstructural characteristics. However, so far there has been little research on its rapid solidification mechanism under the extremely nonequilibrium condition.

In this work, Al80.4Cu13.6Si6 eutectic alloy was undercooled up to 147 K (0.18TE). Generally speaking, under the conventional solidification condition, a liquid aluminium alloy can be hardly undercooled because of oxidation. Dr. Ruan and Prof. Wei made it realized by choosing dehydrated B2O3 agent as a denucleating agent and providing a high-vacuum environment and special melting processing. In addition, the experimental parameters, such as cooling rate, superheating, and holding time, were controlled in order to get a wider undercooling range for comparison.

The undercooling level of alloy melt has a strong effect on its crystallization kinetics, structure morphology, and final physical and chemical properties. This study presents the microstructural characteristics of highly undercooled Al80.4Cu13.6Si6 ternary eutectic alloys. So far, most investigations on eutectic growth focus on binary alloy systems. The rapid solidification of undercooled ternary alloys involves the competitive nucleation and coupled growth of three eutectic phases from one liquid phase, which makes it more complicated than the case of binary alloys. The authors showed that the phase selection of Al80.4Cu13.6Si6 ternary eutectic alloy is influenced by undercooling, which makes the competitive nucleation and cooperative growth among Ą(Al), (Si) and ć(CuAl2) phases become more drastic. Once undercooling exceeds 73 K, the primary phase will transform from (Al) dendrite to faceted (Si) block.

"This paper emphasizes the phase selection and microstructure formation of substantially undercooled ternary eutectic alloys. The result is of academic and practical significance." said one journal reviewer. A series of papers about rapid solidification of ternary eutectic alloys written by Dr. Ruan and Prof. Wei have been published in Chin. Sci. Bull., Sci. Chin. G, etc. "It enriched and expanded the research results on nonequilibrium solidification. It offered us new references to develop solidification and nonequilibrium phase transition theory," said another reviewer.

The authors are affiliated at Laboratory of Space Materials Science and Technology (LMSS) of NPU. This laboratory is conducting research mainly in three respects: materials processing under the space simulation condition, thermophysical properties of undercooled liquid alloys, and computational material science.

Y Ruan, B Wei | EurekAlert!
Further information:
http://www.nwpu.edu.cn

More articles from Physics and Astronomy:

nachricht Physicists Design Ultrafocused Pulses
27.07.2017 | Universität Innsbruck

nachricht CCNY physicists master unexplored electron property
26.07.2017 | City College of New York

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>