Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Starlit Memories Lead Scientist Back to His Roots

09.02.2010
The stars in the night sky over Ziakas in northern Greece still shine brightly in Thanasis Economou’s memory, more than 60 years after he became entranced with them as a child.

That early fascination with the heavens led to a vital role in the study of the solar system for Economou, a Senior Scientist in the Enrico Fermi Institute. But his memories tugged at him again during a trip to Greece two years ago, and led him to propose building an astronomical observatory near his childhood home.

Economou says he hopes to inspire a new generation of children, “so the kids can observe the stars, not with the naked eye like I did in the last century, but with the help of a modern telescope.”

The idea is gaining traction back in Greece. The province of Grevena and the European Union are providing approximately $4.5 million euros ($6.6 million U.S.) in funding for the observatory, preliminary plans are nearly complete, and construction is slated to begin in spring 2010.

From Earth to the Moon

The project has brought Economou, 72, full circle in the country that he had to flee as a child, just as the stars were first capturing his imagination. After a childhood marked by war and dislocation, Economou built his career in physics as an international authority on space science instruments. His work helped lead to devices that have revealed the composition of Earth’s moon, scrutinized the rocks of Mars, analyzed the moons of Saturn, and sifted through the dust of comets.

Economou receives accolades now when he returns to his home province in Greece, but he remembers when it was a dangerous place. “I left Greece in 1948, together with 200 other kids from our village in order to escape the consequences of the civil war that was raging in Greece at that time,” Economou said. He fled to Czechoslovakia via Albania, and his family followed a year later.

Economou completed high school and college in Czechoslovakia, receiving his doctoral degree in physics from Charles University in Prague in 1964. He then joined the research group of the late Anthony Turkevich, the James Franck Distinguished Service Professor Emeritus in Chemistry.

Turkevich launched Economou on his long career in instrument development for robotic planetary spacecraft. Economou helped Turkevich develop the alpha scattering instrument for the Surveyor V, VI and VII spacecraft that landed on the moon in 1967 and 1968. The instrument revealed the composition of the lunar surface long before the Apollo 11 mission verified their results.

On a Mission or Three

He was later a member of the Mars Pathfinder team, which helped develop and build the Alpha Proton X-ray Spectrometer for a mission that received the 1998 Achievement Trophy from the National Air and Space Museum. In addition to planning for the new observatory in Greece, Economou currently collaborates on three interplanetary NASA missions:

* Spirit and Opportunity missions to Mars: The two rovers landed on Mars in January 2004. Both rovers carry alpha particle X-ray spectrometers—chemical sensors similar to the one that Economou provided for the Mars Pathfinder rover in 1996. Opportunity’s APXS helped scientists ascertain that some Martian soils were once drenched in water, and it has confirmed the identity of several suspicious rocks as meteorites since 2005. Designed as 90-day missions, the rovers now have operated on the Martian surface for more than six years.

* Cassini mission to Saturn: Economou monitors the performance of the High Rate Detector, which he helped to develop, together with the late John Simpson, the Arthur Holly Compton Distinguished Service Professor Emeritus in Physics, and the late Anthony Tuzzolino, a Senior Scientist in the Fermi Institute. In 2005, the instrument detected a cloud of particles around Enceladus, one of Saturn’s icy moons. During a Nov. 21, 2009 flyby of Enceladus, the HRD detected individual jets of water vapor and other particles spewing from fissures in the south polar region.

* Stardust-NExT (New Exploration of Tempel-1) mission to a comet: Here again, Economou carries on the work of Simpson’s group, which developed the Dust Flux Monitor Instrument for the Stardust mission. That instrument measured the microscopic dust particle flux coming out from the nucleus of the comet, when Stardust flew within 150 miles of Comet Wild-2 in January 2004. Recommissioned for a new mission, Stardust is now headed for a February 2011 rendezvous with Comet Tempel-1.

“I’m on the phone a large portion of the day in teleconferences planning the activities for all these missions,” Economou says.

All that work is leading to two different kinds of legacy. One is the science that Economou has spearheaded, including precision instruments that will remain for eons in the sands of Mars or the vacuum of space. The other payoff is still to come, when children visit the Greek observatory or log in via the Internet from schools all across Economou’s native country, to view the planets and stars that have inspired him.

| Newswise Science News
Further information:
http://news.uchicago.edu/

Further reports about: COMET Economou Enceladus Mars Martian Winds PathFinder Saturn Stardust Starlit X-ray microscopy

More articles from Physics and Astronomy:

nachricht Smooth propagation of spin waves using gold
26.06.2017 | Toyohashi University of Technology

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>