Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Starlit Memories Lead Scientist Back to His Roots

09.02.2010
The stars in the night sky over Ziakas in northern Greece still shine brightly in Thanasis Economou’s memory, more than 60 years after he became entranced with them as a child.

That early fascination with the heavens led to a vital role in the study of the solar system for Economou, a Senior Scientist in the Enrico Fermi Institute. But his memories tugged at him again during a trip to Greece two years ago, and led him to propose building an astronomical observatory near his childhood home.

Economou says he hopes to inspire a new generation of children, “so the kids can observe the stars, not with the naked eye like I did in the last century, but with the help of a modern telescope.”

The idea is gaining traction back in Greece. The province of Grevena and the European Union are providing approximately $4.5 million euros ($6.6 million U.S.) in funding for the observatory, preliminary plans are nearly complete, and construction is slated to begin in spring 2010.

From Earth to the Moon

The project has brought Economou, 72, full circle in the country that he had to flee as a child, just as the stars were first capturing his imagination. After a childhood marked by war and dislocation, Economou built his career in physics as an international authority on space science instruments. His work helped lead to devices that have revealed the composition of Earth’s moon, scrutinized the rocks of Mars, analyzed the moons of Saturn, and sifted through the dust of comets.

Economou receives accolades now when he returns to his home province in Greece, but he remembers when it was a dangerous place. “I left Greece in 1948, together with 200 other kids from our village in order to escape the consequences of the civil war that was raging in Greece at that time,” Economou said. He fled to Czechoslovakia via Albania, and his family followed a year later.

Economou completed high school and college in Czechoslovakia, receiving his doctoral degree in physics from Charles University in Prague in 1964. He then joined the research group of the late Anthony Turkevich, the James Franck Distinguished Service Professor Emeritus in Chemistry.

Turkevich launched Economou on his long career in instrument development for robotic planetary spacecraft. Economou helped Turkevich develop the alpha scattering instrument for the Surveyor V, VI and VII spacecraft that landed on the moon in 1967 and 1968. The instrument revealed the composition of the lunar surface long before the Apollo 11 mission verified their results.

On a Mission or Three

He was later a member of the Mars Pathfinder team, which helped develop and build the Alpha Proton X-ray Spectrometer for a mission that received the 1998 Achievement Trophy from the National Air and Space Museum. In addition to planning for the new observatory in Greece, Economou currently collaborates on three interplanetary NASA missions:

* Spirit and Opportunity missions to Mars: The two rovers landed on Mars in January 2004. Both rovers carry alpha particle X-ray spectrometers—chemical sensors similar to the one that Economou provided for the Mars Pathfinder rover in 1996. Opportunity’s APXS helped scientists ascertain that some Martian soils were once drenched in water, and it has confirmed the identity of several suspicious rocks as meteorites since 2005. Designed as 90-day missions, the rovers now have operated on the Martian surface for more than six years.

* Cassini mission to Saturn: Economou monitors the performance of the High Rate Detector, which he helped to develop, together with the late John Simpson, the Arthur Holly Compton Distinguished Service Professor Emeritus in Physics, and the late Anthony Tuzzolino, a Senior Scientist in the Fermi Institute. In 2005, the instrument detected a cloud of particles around Enceladus, one of Saturn’s icy moons. During a Nov. 21, 2009 flyby of Enceladus, the HRD detected individual jets of water vapor and other particles spewing from fissures in the south polar region.

* Stardust-NExT (New Exploration of Tempel-1) mission to a comet: Here again, Economou carries on the work of Simpson’s group, which developed the Dust Flux Monitor Instrument for the Stardust mission. That instrument measured the microscopic dust particle flux coming out from the nucleus of the comet, when Stardust flew within 150 miles of Comet Wild-2 in January 2004. Recommissioned for a new mission, Stardust is now headed for a February 2011 rendezvous with Comet Tempel-1.

“I’m on the phone a large portion of the day in teleconferences planning the activities for all these missions,” Economou says.

All that work is leading to two different kinds of legacy. One is the science that Economou has spearheaded, including precision instruments that will remain for eons in the sands of Mars or the vacuum of space. The other payoff is still to come, when children visit the Greek observatory or log in via the Internet from schools all across Economou’s native country, to view the planets and stars that have inspired him.

| Newswise Science News
Further information:
http://news.uchicago.edu/

Further reports about: COMET Economou Enceladus Mars Martian Winds PathFinder Saturn Stardust Starlit X-ray microscopy

More articles from Physics and Astronomy:

nachricht New thruster design increases efficiency for future spaceflight
16.08.2017 | American Institute of Physics

nachricht Tracking a solar eruption through the solar system
16.08.2017 | American Geophysical Union

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>