Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Starlit Memories Lead Scientist Back to His Roots

09.02.2010
The stars in the night sky over Ziakas in northern Greece still shine brightly in Thanasis Economou’s memory, more than 60 years after he became entranced with them as a child.

That early fascination with the heavens led to a vital role in the study of the solar system for Economou, a Senior Scientist in the Enrico Fermi Institute. But his memories tugged at him again during a trip to Greece two years ago, and led him to propose building an astronomical observatory near his childhood home.

Economou says he hopes to inspire a new generation of children, “so the kids can observe the stars, not with the naked eye like I did in the last century, but with the help of a modern telescope.”

The idea is gaining traction back in Greece. The province of Grevena and the European Union are providing approximately $4.5 million euros ($6.6 million U.S.) in funding for the observatory, preliminary plans are nearly complete, and construction is slated to begin in spring 2010.

From Earth to the Moon

The project has brought Economou, 72, full circle in the country that he had to flee as a child, just as the stars were first capturing his imagination. After a childhood marked by war and dislocation, Economou built his career in physics as an international authority on space science instruments. His work helped lead to devices that have revealed the composition of Earth’s moon, scrutinized the rocks of Mars, analyzed the moons of Saturn, and sifted through the dust of comets.

Economou receives accolades now when he returns to his home province in Greece, but he remembers when it was a dangerous place. “I left Greece in 1948, together with 200 other kids from our village in order to escape the consequences of the civil war that was raging in Greece at that time,” Economou said. He fled to Czechoslovakia via Albania, and his family followed a year later.

Economou completed high school and college in Czechoslovakia, receiving his doctoral degree in physics from Charles University in Prague in 1964. He then joined the research group of the late Anthony Turkevich, the James Franck Distinguished Service Professor Emeritus in Chemistry.

Turkevich launched Economou on his long career in instrument development for robotic planetary spacecraft. Economou helped Turkevich develop the alpha scattering instrument for the Surveyor V, VI and VII spacecraft that landed on the moon in 1967 and 1968. The instrument revealed the composition of the lunar surface long before the Apollo 11 mission verified their results.

On a Mission or Three

He was later a member of the Mars Pathfinder team, which helped develop and build the Alpha Proton X-ray Spectrometer for a mission that received the 1998 Achievement Trophy from the National Air and Space Museum. In addition to planning for the new observatory in Greece, Economou currently collaborates on three interplanetary NASA missions:

* Spirit and Opportunity missions to Mars: The two rovers landed on Mars in January 2004. Both rovers carry alpha particle X-ray spectrometers—chemical sensors similar to the one that Economou provided for the Mars Pathfinder rover in 1996. Opportunity’s APXS helped scientists ascertain that some Martian soils were once drenched in water, and it has confirmed the identity of several suspicious rocks as meteorites since 2005. Designed as 90-day missions, the rovers now have operated on the Martian surface for more than six years.

* Cassini mission to Saturn: Economou monitors the performance of the High Rate Detector, which he helped to develop, together with the late John Simpson, the Arthur Holly Compton Distinguished Service Professor Emeritus in Physics, and the late Anthony Tuzzolino, a Senior Scientist in the Fermi Institute. In 2005, the instrument detected a cloud of particles around Enceladus, one of Saturn’s icy moons. During a Nov. 21, 2009 flyby of Enceladus, the HRD detected individual jets of water vapor and other particles spewing from fissures in the south polar region.

* Stardust-NExT (New Exploration of Tempel-1) mission to a comet: Here again, Economou carries on the work of Simpson’s group, which developed the Dust Flux Monitor Instrument for the Stardust mission. That instrument measured the microscopic dust particle flux coming out from the nucleus of the comet, when Stardust flew within 150 miles of Comet Wild-2 in January 2004. Recommissioned for a new mission, Stardust is now headed for a February 2011 rendezvous with Comet Tempel-1.

“I’m on the phone a large portion of the day in teleconferences planning the activities for all these missions,” Economou says.

All that work is leading to two different kinds of legacy. One is the science that Economou has spearheaded, including precision instruments that will remain for eons in the sands of Mars or the vacuum of space. The other payoff is still to come, when children visit the Greek observatory or log in via the Internet from schools all across Economou’s native country, to view the planets and stars that have inspired him.

| Newswise Science News
Further information:
http://news.uchicago.edu/

Further reports about: COMET Economou Enceladus Mars Martian Winds PathFinder Saturn Stardust Starlit X-ray microscopy

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>