Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Squeezed laser will bring gravitational waves to the light of day

12.09.2011
Measuring at the limits of the laws of nature – this is the challenge which researchers repeatedly take up in their search for gravitational waves.

The interferometers they use here measure with such sensitivity that a particular quantum phenomenon of light – shot noise – limits the measuring accuracy. With the "squeezed light" method scientists from the Max Planck Society and the Leibniz University Hannover likewise use quantum physics in a countermove in order to remove the interfering effect.


The new squeezed light laser of GEO600. A highly complex laser system produces light which particularly quiet in the gravitational wave detector. Credit: © Max Planck Institute for Gravitational Physics (Hannover)

The new type of laser light improves the measuring accuracy of the gravitational wave detector GEO600 by around 50 percent and thus increases its effective sensitivity. This is the first time this technology has been used outside of a test laboratory anywhere in the world. The results will be published in the specialist journal Nature Physics, online on 11th September 2011. (http://dx.doi.org/10.1038/NPHYS2083)

Some 50 years after the development of the first lasers, the technology of "squeezed light" can be used to generate a completely new quality of laser light. The light from a squeezed laser radiates much more calmly than light from a conventional laser source. "Thanks to the squeezed laser, we were able to increase the measuring sensitivity of GEO600 to 150%," says Hartmut Grote, who heads the detector operation. "The new light source fulfils all requirements as expected." In future, this technology could be used to even double the measuring accuracy. In the search for the almost undetectable gravitational waves, this increase in sensitivity is an important step to their direct detection.

The GEO600 experiment at the QUEST (Center for Quantum Engineering and Space-Time Research) Cluster of Excellence is part of the international LIGO Virgo Collaboration (LVCon) and is putting the researchers from the Max Planck Institute for Gravitational Physics (Sub-Institute Hanover, Albert Einstein Institute/AEI) and from the Institute for Gravitational Physics at the Leibniz University Hannover on the track of gravitational waves. Einstein predicted these oscillations in space-time around a hundred years ago in his General Theory of Relativity. They arise during turbulent cosmic events such as supernova explosions, for example.

Gravitational waves are scarcely noticeable on Earth, however. One reason is that the interaction between matter and space is very weak. Changes to the structure of space-time which occur in our immediate astronomical vicinity as a result of the movements of relatively low-mass objects, such as moons or planets, are way below what is measurable. Turbulent supernova explosions which violently shake space-time occur at a great distance, in contrast. The gravitational waves generated in the process are considerably attenuated when they reach Earth. The relative measuring path in a gravitational wave detector would change by only around a thousandth of a proton diameter if a supernova occurred within our Milky Way. With GEO600, the scientists are meanwhile able to measure such differences in length.

Laser light with constant intensity

In order to be able to make such accurate measurements, the physicists must rely on metrology techniques that are as free from interferences as possible. One of the effects which has caused interference so far is the so-called shot noise. Their quantum nature means the photons rain down at irregular intervals onto the photodiode in the detector. This is evident in the signal as fluctuating background brightness. An oscillation of space-time which causes a similarly weak change in the brightness like the shot noise, can thus only be recognised with difficulty.

Roman Schnabel and his research group in Hannover have now developed a special light source with which the disturbing shot noise can be curbed. When integrated into GEO600, the squeezed light laser assists the gravitational wave detector to a new measuring sensitivity. This makes the GEO600 the first detector whose signal beam is smoothed with the new type of laser light.

The Heisenberg uncertainty principle states that the intensity and colour of a laser beam cannot simultaneously be defined with arbitrary accuracy. For example, the more exact the intensity (to be more precise: the amplitude) is specified, the more uncertain the colour becomes (to be more precise: the phase). The quantum physicists utilise this effect to minimise the shot noise in the GEO600 experiment. After all, the shot noise is actually nothing more than an uncertainty of the laser intensity. They improve the laser light so that its intensity is very accurately defined, i.e. exhibits almost no fluctuations. The experts also call this process "squeezing". In this experiment, it is of no consequence that the light colour becomes more imprecise, i.e. slightly more "colourful", since this parameter is not included in the measurement data.

"We now feed the squeezed light into the interferometer, in addition to our normal laser light," explains Schnabel. "If the two light fields then superimpose, the resulting laser beam has a much more uniform intensity, compared to the original signal beam. "We thus smooth out the irregularities caused by quantum physical effects in the detector signal," Schnabel continues.

The squeezed light laser has been undergoing a longer test phase since April last year at GEO600 and is now being used in the search for gravitational waves. The application of squeezed light technology has thus passed the acid test. The American colleagues within the LVC plan to soon test a squeezed laser on the LIGO detectors.

Dr. Felicitas Mokler | EurekAlert!
Further information:
http://www.mpg.de

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>