Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Space@Virginia Tech to Lead New NSF Satellite Study to Improve Communications

28.05.2013
The Earth’s atmosphere becomes electrically active at altitudes above approximately 300,000 feet, an elevation that is about seven to nine times the height most commercial passenger aircraft fly. This electricity occurs due to the intensity of solar radiation.

Propagating at this same height are radio waves and global positioning system (GPS) signals. As these signals interact with the electrically charged atmosphere their propagation is affected, sometimes in damaging ways. The result can be garbled signals and interrupted communications for users such as ham radio operators and radar trackers.


Virginia Tech

The Virginia Tech instruments placed on this nano-satellite will allow the researchers to understand how waves generated by weather systems in the lower atmosphere propagate and deliver energy and momentum into the mesosphere, lower thermosphere, and ionosphere.

One of the main causes of these disruptions is thought to be waves generated in the lower atmosphere by weather systems. As these waves propagate upward they distort the electrically active region, resulting in instabilities at high altitudes that perturb the medium through which GPS and radio signals propagate.

Researchers at Virginia Tech are teaming with scientists from three other groups to build a small satellite dedicated to global observations of these waves in the mesosphere, thermosphere, and ionosphere, the atmospheric layers above the earth.

The National Science Foundation (NSF) is funding this work, capped at $900,000, and Greg Earle, a professor of electrical and computer engineering at Virginia Tech, is leading the work.

Earle’s research group is part of the Space@Virginia Tech research center. The group is working on this project in collaboration with colleagues and students led by Gary Swenson of the remote sensing and space sciences group at the University of Illinois. Rebecca Bishop from The Aerospace Corporation is providing some of the electrical instrumentation for the mission, and Sharon Vadas from the Colorado Research Associates will use sophisticated computational models to help interpret data from the satellite.

NSF created its CubeSat-based Science Missions for Geospace and Atmospheric Research to address the need for obtaining key measurements from low-cost satellite missions. NSF cites the recent advances in sensor and spacecraft technologies, allowing the recording of multi-point observations in space, as reasons why the timing is right to launch new satellites to improve the understanding of the geospace and atmospheric sciences.

Earle’s plan calls for a specially designed nano-satellite to be placed in orbit for about nine months in the earth’s atmosphere, at an altitude of about 300 to 400 kilometers or about 1 million feet. The Virginia Tech and Illinois investigators are calling the satellite the lower atmosphere/ionosphere coupling experiment or LAICE.

With the satellite traveling in low earth orbit, Earle said they will be able to “understand how waves generated by weather systems in the lower atmosphere propagate and deliver energy and momentum into the mesosphere, lower thermosphere, and ionosphere. These waves are a vitally important but under-explored facet of atmospheric physics. They strongly influence the dynamics of the media through which they travel by modifying the structure of the atmosphere at altitudes well above their source regions, and they may seed the development of plasma instabilities that scintillate and disrupt radio propagation.”

This global satellite investigation is the first to focus entirely on these waves in an attempt to connect their causes and effects in the three widely different altitude ranges.

The satellite’s recordings will include the disturbances the waves produce in both neutral and ion densities at specific heights.

The researchers will compare the measurements they obtain with meteorological data to understand the connections between tropospheric storms and the lower atmospheric system that includes tropical storms, tornadoes, and even thunderstorms.

Earle said their goal includes the production of global maps of active gravity wave regions in the mid- and low-latitude ionosphere over multiple seasons at all local times, so that global patterns and climatological variations can be quantitatively compared to and correlated with terrestrial weather systems via ray-trace modeling.

Others from Virginia Tech working with Earle on this project include: Kevin Shinpaugh of the Virginia Bioinformatics Institute; Ryan Davidson, of Blacksburg, Va., a post-doctoral associate in Earle’s research group; Chad Fish of Utah State University who is on sabbatical at Virginia Tech; Robert Robertson of McLean, Va., a graduate student in aerospace and ocean engineering; Lucy Fanelli, of New York, N.Y., a graduate student in electrical and computer engineering; Rehan Syed of Centrville, Va., a senior in aerospace and ocean engineering; Cameron Orr, of Yorktown, Va., a senior in electrical and computer engineering; Stephen Noel, of Christiansburg, Va., a graduate student in aerospace and ocean engineering and project manager; and Peter Marquis, of King George, Va., an undergraduate in aerospace and ocean engineering.

Space@Virginia Tech was founded in 2007, and is comprised of eight faculty members, all of whom have international reputations in the fields of space science and engineering.

Lynn Nystrom | Newswise
Further information:
http://www.vt.edu

More articles from Physics and Astronomy:

nachricht Writing and deleting magnets with lasers
19.04.2018 | Helmholtz-Zentrum Dresden-Rossendorf

nachricht Ultrafast electron oscillation and dephasing monitored by attosecond light source
19.04.2018 | Yokohama National University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>