Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Space@Virginia Tech to Lead New NSF Satellite Study to Improve Communications

28.05.2013
The Earth’s atmosphere becomes electrically active at altitudes above approximately 300,000 feet, an elevation that is about seven to nine times the height most commercial passenger aircraft fly. This electricity occurs due to the intensity of solar radiation.

Propagating at this same height are radio waves and global positioning system (GPS) signals. As these signals interact with the electrically charged atmosphere their propagation is affected, sometimes in damaging ways. The result can be garbled signals and interrupted communications for users such as ham radio operators and radar trackers.


Virginia Tech

The Virginia Tech instruments placed on this nano-satellite will allow the researchers to understand how waves generated by weather systems in the lower atmosphere propagate and deliver energy and momentum into the mesosphere, lower thermosphere, and ionosphere.

One of the main causes of these disruptions is thought to be waves generated in the lower atmosphere by weather systems. As these waves propagate upward they distort the electrically active region, resulting in instabilities at high altitudes that perturb the medium through which GPS and radio signals propagate.

Researchers at Virginia Tech are teaming with scientists from three other groups to build a small satellite dedicated to global observations of these waves in the mesosphere, thermosphere, and ionosphere, the atmospheric layers above the earth.

The National Science Foundation (NSF) is funding this work, capped at $900,000, and Greg Earle, a professor of electrical and computer engineering at Virginia Tech, is leading the work.

Earle’s research group is part of the Space@Virginia Tech research center. The group is working on this project in collaboration with colleagues and students led by Gary Swenson of the remote sensing and space sciences group at the University of Illinois. Rebecca Bishop from The Aerospace Corporation is providing some of the electrical instrumentation for the mission, and Sharon Vadas from the Colorado Research Associates will use sophisticated computational models to help interpret data from the satellite.

NSF created its CubeSat-based Science Missions for Geospace and Atmospheric Research to address the need for obtaining key measurements from low-cost satellite missions. NSF cites the recent advances in sensor and spacecraft technologies, allowing the recording of multi-point observations in space, as reasons why the timing is right to launch new satellites to improve the understanding of the geospace and atmospheric sciences.

Earle’s plan calls for a specially designed nano-satellite to be placed in orbit for about nine months in the earth’s atmosphere, at an altitude of about 300 to 400 kilometers or about 1 million feet. The Virginia Tech and Illinois investigators are calling the satellite the lower atmosphere/ionosphere coupling experiment or LAICE.

With the satellite traveling in low earth orbit, Earle said they will be able to “understand how waves generated by weather systems in the lower atmosphere propagate and deliver energy and momentum into the mesosphere, lower thermosphere, and ionosphere. These waves are a vitally important but under-explored facet of atmospheric physics. They strongly influence the dynamics of the media through which they travel by modifying the structure of the atmosphere at altitudes well above their source regions, and they may seed the development of plasma instabilities that scintillate and disrupt radio propagation.”

This global satellite investigation is the first to focus entirely on these waves in an attempt to connect their causes and effects in the three widely different altitude ranges.

The satellite’s recordings will include the disturbances the waves produce in both neutral and ion densities at specific heights.

The researchers will compare the measurements they obtain with meteorological data to understand the connections between tropospheric storms and the lower atmospheric system that includes tropical storms, tornadoes, and even thunderstorms.

Earle said their goal includes the production of global maps of active gravity wave regions in the mid- and low-latitude ionosphere over multiple seasons at all local times, so that global patterns and climatological variations can be quantitatively compared to and correlated with terrestrial weather systems via ray-trace modeling.

Others from Virginia Tech working with Earle on this project include: Kevin Shinpaugh of the Virginia Bioinformatics Institute; Ryan Davidson, of Blacksburg, Va., a post-doctoral associate in Earle’s research group; Chad Fish of Utah State University who is on sabbatical at Virginia Tech; Robert Robertson of McLean, Va., a graduate student in aerospace and ocean engineering; Lucy Fanelli, of New York, N.Y., a graduate student in electrical and computer engineering; Rehan Syed of Centrville, Va., a senior in aerospace and ocean engineering; Cameron Orr, of Yorktown, Va., a senior in electrical and computer engineering; Stephen Noel, of Christiansburg, Va., a graduate student in aerospace and ocean engineering and project manager; and Peter Marquis, of King George, Va., an undergraduate in aerospace and ocean engineering.

Space@Virginia Tech was founded in 2007, and is comprised of eight faculty members, all of whom have international reputations in the fields of space science and engineering.

Lynn Nystrom | Newswise
Further information:
http://www.vt.edu

More articles from Physics and Astronomy:

nachricht Taking a spin on plasma space tornadoes with NASA observations
20.11.2017 | NASA/Goddard Space Flight Center

nachricht NASA detects solar flare pulses at Sun and Earth
17.11.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Antarctic landscape insights keep ice loss forecasts on the radar

20.11.2017 | Earth Sciences

Filling the gap: High-latitude volcanic eruptions also have global impact

20.11.2017 | Earth Sciences

Water world

20.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>