Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Space@Virginia Tech to Lead New NSF Satellite Study to Improve Communications

28.05.2013
The Earth’s atmosphere becomes electrically active at altitudes above approximately 300,000 feet, an elevation that is about seven to nine times the height most commercial passenger aircraft fly. This electricity occurs due to the intensity of solar radiation.

Propagating at this same height are radio waves and global positioning system (GPS) signals. As these signals interact with the electrically charged atmosphere their propagation is affected, sometimes in damaging ways. The result can be garbled signals and interrupted communications for users such as ham radio operators and radar trackers.


Virginia Tech

The Virginia Tech instruments placed on this nano-satellite will allow the researchers to understand how waves generated by weather systems in the lower atmosphere propagate and deliver energy and momentum into the mesosphere, lower thermosphere, and ionosphere.

One of the main causes of these disruptions is thought to be waves generated in the lower atmosphere by weather systems. As these waves propagate upward they distort the electrically active region, resulting in instabilities at high altitudes that perturb the medium through which GPS and radio signals propagate.

Researchers at Virginia Tech are teaming with scientists from three other groups to build a small satellite dedicated to global observations of these waves in the mesosphere, thermosphere, and ionosphere, the atmospheric layers above the earth.

The National Science Foundation (NSF) is funding this work, capped at $900,000, and Greg Earle, a professor of electrical and computer engineering at Virginia Tech, is leading the work.

Earle’s research group is part of the Space@Virginia Tech research center. The group is working on this project in collaboration with colleagues and students led by Gary Swenson of the remote sensing and space sciences group at the University of Illinois. Rebecca Bishop from The Aerospace Corporation is providing some of the electrical instrumentation for the mission, and Sharon Vadas from the Colorado Research Associates will use sophisticated computational models to help interpret data from the satellite.

NSF created its CubeSat-based Science Missions for Geospace and Atmospheric Research to address the need for obtaining key measurements from low-cost satellite missions. NSF cites the recent advances in sensor and spacecraft technologies, allowing the recording of multi-point observations in space, as reasons why the timing is right to launch new satellites to improve the understanding of the geospace and atmospheric sciences.

Earle’s plan calls for a specially designed nano-satellite to be placed in orbit for about nine months in the earth’s atmosphere, at an altitude of about 300 to 400 kilometers or about 1 million feet. The Virginia Tech and Illinois investigators are calling the satellite the lower atmosphere/ionosphere coupling experiment or LAICE.

With the satellite traveling in low earth orbit, Earle said they will be able to “understand how waves generated by weather systems in the lower atmosphere propagate and deliver energy and momentum into the mesosphere, lower thermosphere, and ionosphere. These waves are a vitally important but under-explored facet of atmospheric physics. They strongly influence the dynamics of the media through which they travel by modifying the structure of the atmosphere at altitudes well above their source regions, and they may seed the development of plasma instabilities that scintillate and disrupt radio propagation.”

This global satellite investigation is the first to focus entirely on these waves in an attempt to connect their causes and effects in the three widely different altitude ranges.

The satellite’s recordings will include the disturbances the waves produce in both neutral and ion densities at specific heights.

The researchers will compare the measurements they obtain with meteorological data to understand the connections between tropospheric storms and the lower atmospheric system that includes tropical storms, tornadoes, and even thunderstorms.

Earle said their goal includes the production of global maps of active gravity wave regions in the mid- and low-latitude ionosphere over multiple seasons at all local times, so that global patterns and climatological variations can be quantitatively compared to and correlated with terrestrial weather systems via ray-trace modeling.

Others from Virginia Tech working with Earle on this project include: Kevin Shinpaugh of the Virginia Bioinformatics Institute; Ryan Davidson, of Blacksburg, Va., a post-doctoral associate in Earle’s research group; Chad Fish of Utah State University who is on sabbatical at Virginia Tech; Robert Robertson of McLean, Va., a graduate student in aerospace and ocean engineering; Lucy Fanelli, of New York, N.Y., a graduate student in electrical and computer engineering; Rehan Syed of Centrville, Va., a senior in aerospace and ocean engineering; Cameron Orr, of Yorktown, Va., a senior in electrical and computer engineering; Stephen Noel, of Christiansburg, Va., a graduate student in aerospace and ocean engineering and project manager; and Peter Marquis, of King George, Va., an undergraduate in aerospace and ocean engineering.

Space@Virginia Tech was founded in 2007, and is comprised of eight faculty members, all of whom have international reputations in the fields of space science and engineering.

Lynn Nystrom | Newswise
Further information:
http://www.vt.edu

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>