Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Silicon Chip "Replaces" Rare Earths

28.02.2011
Rare earths are an expensive and necessary component of strong permanent magnets.

However, their use for this purpose can be optimised and thereby reduced. This has been demonstrated in computer simulations by a Special Research Program funded by the Austrian Science Fund FWF.


A balanced perspective on classical theories of philosophical gender research. Source: Thomas Schrefl

The results, which will be presented in the US tomorrow, show that such magnets may contain local deformations in the crystal lattice of the material. These deformations are above all located at the boundary of material grains. According to the calculations of the St. Pölten University of Applied Sciences, the magnetic force of the material is weakened in these areas. This could be avoided by optimising the material structure, which would save resources by reducing the amount of rare earths required.

With an annual production of 150,000 tonnes, rare earths are really not that rare. The real problem is that they are rather difficult to extract. In view of rapidly growing global demand, a shortage is therefore imminent. Due to their particular chemical properties, rare earths are sought after for modern environmental technology. This is a good reason for the main exporter, China, to limit exports - and for other countries to optimise their use of the resource. High-end computer simulations, such as the computations from St. Pölten University of Applied Sciences, carried out as part of an FWF-funded Special Research Program, could make a major contribution to this optimization. Tomorrow, at the annual meeting of the US Minerals, Metals & Materials Society in San Diego, California, these simulations will be presented for the first time.

CRYSTAL CRISES
The team at St. Pölten University studied the exact structure of neodymium magnets. In addition to the rare earth element neodymium, the magnets consist of iron and boron. The head of the Industrial Simulations study course, Prof. Thomas Schrefl, commented on the recent findings: "Our simulations show disturbances in the crystalline structure in neodymium magnets. Such disturbances cause the magnetising direction to change in these areas. In a so-called anisotropic magnet, like the neodymium magnet, in which all parts must have the same magnetising direction, this phenomenon weakens the magnet." The team´s simulations show that such disturbances in the junctions between individual material grains occur when three different grains meet. In these triple junctions, a non-magnetic enclosure is formed and the crystal lattice near the enclosure is disturbed. In the same region, a high demagnetising field weakens the magnet further.

The influence of disturbances on the magnet´s behaviour were found in multiscale simulations that take into account several different dimensions: from the atomistic to the visible range. Conventional simulations were unable to cover this range of size until now. It was the combination of individual numerical computational methods, such as fast boundary element methods and tensor grid methods for computing the magnetic fields, which finally made it possible. The development was achieved by Prof. Schrefl´s team as part of the Special Research Program ViCoM - Vienna Computational Materials Laboratory.

COHESION THROUGH MOVEMENT
The spokesperson for the Special Research Program, Prof. Georg Kresse from the research group Computational Materials Physics at the University of Vienna, explained the aims of the Special Research Program: "We want to describe the correlated movement of electrons more accurately. This electron correlation is mainly responsible for the cohesion of solid-state bodies and molecules. An accurate description is therefore crucial for precisely predicting the mechanical, electronic and optical properties of materials."

In a total of twelve project groups, more than 50 scientists are working on describing material properties, which will be of key importance to numerous technologies of tomorrow, including microelectronics, solar technology and polymer production. What is more, the Special Research Program helps with the optimisation of magnetic and magneto-optical storage, as in high-performance permanent magnets for electric cars or wind turbines, thereby making a substantial contribution to developing future-oriented technologies. The work of this Special Research Program, which is funded by the FWF, therefore transcends mere scientific interest - as is clear from recent discussions about the availability and strategic importance of rare earths. It is a convincing testament to how insights acquired in basic research can rapidly gain unexpected import.

Scientific contact:
Prof. Dr. Thomas Schrefl
St. Pölten University of
Applied Sciences
Matthias Corvinus-Str. 15
3100 St. Pölten, Austria
T +43 / 2742 / 313 228 - 313
E thomas.schrefl@fhstp.ac.at
W http://www.fhstp.ac.at
Austrian Science Fund FWF:
Mag. Stefan Bernhardt
Haus der Forschung
Sensengasse 1
1090 Vienna, Austria
T +43 / 1 / 505 67 40 - 8111
E stefan.bernhardt@fwf.ac.at
W http://www.fwf.ac.at
Copy Editing & Distribution:
PR&D - Public Relations for Research & Education Mariannengasse 8 1090 Vienna, Austria T +43 / 1 / 505 70 44 E contact@prd.at W http://www.prd.at

Raphaela Spadt | PR&D
Further information:
http://www.fwf.ac.at
http://www.fhstp.ac.at

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>