Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Silicon Chip "Replaces" Rare Earths

28.02.2011
Rare earths are an expensive and necessary component of strong permanent magnets.

However, their use for this purpose can be optimised and thereby reduced. This has been demonstrated in computer simulations by a Special Research Program funded by the Austrian Science Fund FWF.


A balanced perspective on classical theories of philosophical gender research. Source: Thomas Schrefl

The results, which will be presented in the US tomorrow, show that such magnets may contain local deformations in the crystal lattice of the material. These deformations are above all located at the boundary of material grains. According to the calculations of the St. Pölten University of Applied Sciences, the magnetic force of the material is weakened in these areas. This could be avoided by optimising the material structure, which would save resources by reducing the amount of rare earths required.

With an annual production of 150,000 tonnes, rare earths are really not that rare. The real problem is that they are rather difficult to extract. In view of rapidly growing global demand, a shortage is therefore imminent. Due to their particular chemical properties, rare earths are sought after for modern environmental technology. This is a good reason for the main exporter, China, to limit exports - and for other countries to optimise their use of the resource. High-end computer simulations, such as the computations from St. Pölten University of Applied Sciences, carried out as part of an FWF-funded Special Research Program, could make a major contribution to this optimization. Tomorrow, at the annual meeting of the US Minerals, Metals & Materials Society in San Diego, California, these simulations will be presented for the first time.

CRYSTAL CRISES
The team at St. Pölten University studied the exact structure of neodymium magnets. In addition to the rare earth element neodymium, the magnets consist of iron and boron. The head of the Industrial Simulations study course, Prof. Thomas Schrefl, commented on the recent findings: "Our simulations show disturbances in the crystalline structure in neodymium magnets. Such disturbances cause the magnetising direction to change in these areas. In a so-called anisotropic magnet, like the neodymium magnet, in which all parts must have the same magnetising direction, this phenomenon weakens the magnet." The team´s simulations show that such disturbances in the junctions between individual material grains occur when three different grains meet. In these triple junctions, a non-magnetic enclosure is formed and the crystal lattice near the enclosure is disturbed. In the same region, a high demagnetising field weakens the magnet further.

The influence of disturbances on the magnet´s behaviour were found in multiscale simulations that take into account several different dimensions: from the atomistic to the visible range. Conventional simulations were unable to cover this range of size until now. It was the combination of individual numerical computational methods, such as fast boundary element methods and tensor grid methods for computing the magnetic fields, which finally made it possible. The development was achieved by Prof. Schrefl´s team as part of the Special Research Program ViCoM - Vienna Computational Materials Laboratory.

COHESION THROUGH MOVEMENT
The spokesperson for the Special Research Program, Prof. Georg Kresse from the research group Computational Materials Physics at the University of Vienna, explained the aims of the Special Research Program: "We want to describe the correlated movement of electrons more accurately. This electron correlation is mainly responsible for the cohesion of solid-state bodies and molecules. An accurate description is therefore crucial for precisely predicting the mechanical, electronic and optical properties of materials."

In a total of twelve project groups, more than 50 scientists are working on describing material properties, which will be of key importance to numerous technologies of tomorrow, including microelectronics, solar technology and polymer production. What is more, the Special Research Program helps with the optimisation of magnetic and magneto-optical storage, as in high-performance permanent magnets for electric cars or wind turbines, thereby making a substantial contribution to developing future-oriented technologies. The work of this Special Research Program, which is funded by the FWF, therefore transcends mere scientific interest - as is clear from recent discussions about the availability and strategic importance of rare earths. It is a convincing testament to how insights acquired in basic research can rapidly gain unexpected import.

Scientific contact:
Prof. Dr. Thomas Schrefl
St. Pölten University of
Applied Sciences
Matthias Corvinus-Str. 15
3100 St. Pölten, Austria
T +43 / 2742 / 313 228 - 313
E thomas.schrefl@fhstp.ac.at
W http://www.fhstp.ac.at
Austrian Science Fund FWF:
Mag. Stefan Bernhardt
Haus der Forschung
Sensengasse 1
1090 Vienna, Austria
T +43 / 1 / 505 67 40 - 8111
E stefan.bernhardt@fwf.ac.at
W http://www.fwf.ac.at
Copy Editing & Distribution:
PR&D - Public Relations for Research & Education Mariannengasse 8 1090 Vienna, Austria T +43 / 1 / 505 70 44 E contact@prd.at W http://www.prd.at

Raphaela Spadt | PR&D
Further information:
http://www.fwf.ac.at
http://www.fhstp.ac.at

More articles from Physics and Astronomy:

nachricht Witnessing turbulent motion in the atmosphere of a distant star
23.08.2017 | Max-Planck-Institut für Radioastronomie

nachricht Heating quantum matter: A novel view on topology
22.08.2017 | Université libre de Bruxelles

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>