Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New security and medical sensor devices made possible by metallic nanostructures

09.04.2009
Scientists have designed tiny new sensor structures that could be used in novel security devices to detect poisons and explosives, or in highly sensitive medical sensors, according to research published yesterday (8 April) in Nano Letters.

The new 'nanosensors', which are based on a fundamental science discovery in UK, Belgian and US research groups, could be tailor-made to instantly detect the presence of particular molecules, for example poisons or explosives in transport screening situations, or proteins in patients' blood samples, with high sensitivity.

The researchers were led by Imperial College London physicists funded by the Engineering and Physical Sciences Research Council. The team showed that by putting together two specific 'nanostructures' made of gold or silver, they can make an early prototype device which, once optimised, should exhibit a highly sensitive ability to detect particular chemicals in the immediate surroundings.

The nanostructures are each about 500 times smaller than the width of a human hair. One is shaped like a flat circular disk while the other looks like a doughnut with a hole in the middle. When brought together they interact with light very differently to the way they behave on their own. The scientists have observed that when they are paired up they scatter some specific colours within white light much less, leading to an increased amount of light passing through the structure undisturbed. This is distinctly different to how both structures scatter light separately. This decrease in the interaction with light is in turn affected by the composition of molecules in close proximity to the structures. The researchers hope that this effect can be harnessed to produce sensor devices.

Lead researcher on the project Professor Stefan Maier from Imperial's Department of Physics, and an Associate of Imperial's Institute for Security Science and Technology, said:

"Pairing up these structures has a unique effect on the way they scatter light – an effect which could be very useful if, as our computer simulations suggest, it is extremely sensitive to changes in surrounding environment. With further testing we hope to show that it is possible to harness this property to make a highly sensitive nanosensor."

Metal nanostructures have been used as sensors before, as they interact very strongly with light due to so-called localised plasmon resonances. But this is the first time a pair with such a carefully tailored interaction with light has been created.

The device could be tailored to detect different chemicals by decorating the nanostructure surface with specific 'molecular traps' that bind the chosen target molecules. Once bound, the target molecules would change the colours that the device absorbs and scatters, alerting the sensor to their presence. The team's next step is to test whether the pair of nanostructures can detect chosen substances in lab experiments.

Professor Maier concludes: "This study is a beautiful example of how concepts from different areas of physics fertilise each other – in essence our nanosensor system is a classical analogue of electromagnetically induced transparency, a famous phenomenon from quantum mechanics."

Danielle Reeves | EurekAlert!
Further information:
http://www.imperial.ac.uk

More articles from Physics and Astronomy:

nachricht Magnetic nano-imaging on a table top
20.04.2018 | Georg-August-Universität Göttingen

nachricht New record on squeezing light to one atom: Atomic Lego guides light below one nanometer
20.04.2018 | ICFO-The Institute of Photonic Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>