Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Twist Sound with Metamaterials

26.02.2014

The World's First Acoustic Field Rotator, Described in Applied Physics Letters, May Help to Improve the Imaging Capabilities of Medical Ultrasound Devices

A Chinese-U.S. research team is exploring the use of metamaterials -- artificial materials engineered to have exotic properties not found in nature -- to create devices that manipulate sound in versatile and unprecedented ways.


J.Cheng/Nanjing University

3-D schematic of an designed acoustic field rotator, described in the journal Applied Physics Letters.

In the journal Applied Physics Letters, the team reports a simple design for a device, called an acoustic field rotator, which can twist wave fronts inside it so that they appear to be propagating from another direction.

"Numerous research efforts have centered on metamaterial-based devices with fascinating wave-control capabilities such as invisibility or illusion cloaks," said Jian-chun Cheng, a professor at the Institute of Acoustics, in the Department of Physics at Nanjing University. "An acoustic field rotator, however, which can be [considered] a special kind of illusion cloak with the capability of making an object acoustically appear like a rotated one, doesn't exist yet."

Field rotators for electromagnetic waves and liquid waves have already been demonstrated and show promise in their respective areas, but "another important type of classical wave, an acoustic wave, is a much more familiar part of our daily lives and could find applications in a variety of situations," Cheng noted.

Cheng and colleagues designed what they believe to be the first feasible acoustic rotator model and also fabricated a prototype to validate it.

"We were surprised to discover that by using metamaterials, acoustic waves can be rotated in a manner similar to their electromagnetic or liquid wave counterparts -- so sound has finally joined the club," Cheng said.

Another surprise the team discovered was that acoustic and electromagnetic rotators can be designed based on the same principles. In this case, the researchers used anisotropic metamaterials, which possess physical properties that differ along different directions.

"It's much easier to implement highly anisotropic acoustic metamaterials than electromagnetic ones, and an acoustic rotator may provide even better performance than its [electromagnetic] counterparts," said Cheng.

The team hopes their acoustic rotator, with its ability to freely manipulate acoustic wavefronts, will improve the operation of devices like medical ultrasound machines, which require the precise control of acoustic waves. The ability to rotate the sound waves could improve the contrast of ultrasound devices and allow them to image damaged tissue or diagnose diseases in ways they currently cannot. This is significant because ultrasound devices may be cheaper than other imaging modalities and do not use X-rays.

What's ahead for the team now that they've shown the possibility of building an acoustic rotator by exploiting acoustic metamaterials? "We've fabricated the simplest proof-of-concept device, which at this point can't serve as a mature and practical device, so it's worth further improvement and optimization," said Cheng.

In the future, acoustic rotators could "serve as useful building blocks for constructing more complex structures with richer acoustic manipulation functionalities, if properly combined with other kinds of components," he added.

The article, "Broadband field rotator based on acoustic metamaterials" by Xue Jiang, Bin Liang, Xin-ye Zou, Lei-lei Yin, and Jian-chun Cheng appears in the journal Applied Physics Letters (DOI: 10.1063/1.4866333). The article will be published online on February 25, 2014. After that date, it can be accessed at: http://tinyurl.com/pv78pok

The authors of this paper are affiliated with Nanjing University, the Chinese Academy of Sciences and the University of Illinois at Urbana-Champaign.

ABOUT THE JOURNAL
Applied Physics Letters features concise, rapid reports on significant new findings in applied physics. The journal covers new experimental and theoretical research on applications of physics phenomena related to all branches of science, engineering, and modern technology. See: http://apl.aip.org

Jason Socrates Bardi | newswise

Further reports about: AIP Sound acoustic anisotropic electromagnetic waves metamaterials properties waves

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>