Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists observe first Sun-like magnetic cycle on another star


A model for the Sun

An international team of scientists led by the University of Göttingen has observed a Sun-like magnetic cycle on another planet for the first time. The Sun’s magnetic field drives the Sun’s spots and flares and fuels the Solar wind – a torrent of material that streams off our star into space.

Artist’s illustration of the young Sun-like star Kappa Ceti, blotched with large starspots, which is a sign of its high level of magnetic activity.

Credit: M. Weiss/CfA

The discovery is important not only for stellar physics, but also to understand and predict how the Sun affects the Earth and our technological society through its magnetic activity. The results were published in Astronomy & Astrophysics.

With the advent of dedicated instruments known as stellar spectropolarimeters roughly ten years ago, it became possible to map the magnetic fields of nearby Sun-like stars. Using this new technology at the Bernhard Lyot Telescope in the French Pyrenees, the scientists observed the star 61 Cyg A over a period of nine years. Lying in the northern constellation of Cygnus, 61 Cyg A is somewhat smaller and less massive than the Sun, and at a distance of just over eleven light years it is one of the Sun’s nearest neighbours.

The Sun’s activity varies over the course of a 22-year long magnetic cycle, with the polarity of its magnetic field flipping every eleven years. The frequency and strength of these activities wax and wane over the course of a cycle, with two active periods interspersed with more quiet ones. All in all, the variations are relatively small and slow – a stark contrast to the great bulk of known magnetically active stars that vary dramatically in brightness, release enormous flares and display much more complex long-term variability.

Although 61 Cyg A is a little dimmer and cooler than the Sun, the scientists were able to detect changes in its activity coinciding with polarity flips over a seven-year activity cycle, for a magnetic cycle of 14 years. They observed polarity changes every seven years and an increased complexity in its magnetic field when these flips were approached.

“Our findings could contribute greatly towards creating models of how the Sun and other stars generate magnetic fields. This will enable us to gain an understanding of this important process, which is thought to be operating inside all Sun-like stars, and to help us to further understand our own Sun,” explains Sudeshna Bodo Saikia, Ph.D. student at Göttingen University and lead author of the study. A better understanding of this process and of our Sun in general will increase our ability to predict the impact of the Sun’s activities on our technology on Earth and on orbiting satellites.

The Solar wind and coronal mass ejections can indeed have a huge impact on Earth. When these flows of plasma reach Earth, they not only produce the northern and southern lights, but they can also disturb radio communication and power grids at ground level, as well as damage satellites and even threaten astronauts in Earth orbit.

Original publication: Sudeshna Boro Saikia et al. A solar-like magnetic cycle on the mature K-dwarf 61 Cygni A (HD 201091). Astronomy & Astrophysics 2016. Doi: 10.1051/0004-6361/201628262.

Sudeshna Bodo Saikia
University of Göttingen
Faculty of Physics – Institute for Astrophysics
Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
Phone +49 551 39-13286

Weitere Informationen: photos

Thomas Richter | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht Physicists made crystal lattice from polaritons
20.03.2018 | ITMO University

nachricht Mars' oceans formed early, possibly aided by massive volcanic eruptions
20.03.2018 | University of California - Berkeley

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Physicists made crystal lattice from polaritons

20.03.2018 | Physics and Astronomy

Mars' oceans formed early, possibly aided by massive volcanic eruptions

20.03.2018 | Physics and Astronomy

Thawing permafrost produces more methane than expected

20.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>