Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The saline hiding places for bacteria in Río Tinto could be like those on Mars

14.01.2013
Researchers at the Centre of Astrobiology have identified microorganisms that live inside salt deposits in the acidic and ferrous environment of the Tinto River in Huelva, Spain. The extreme conditions of these microniches appear to be similar to those of the salt deposits on Mars and Jupiter's moon, Europa. This possibility should be borne in mind on missions operating in these places, such as Curiosity.

The high doses of radiation, lack of moisture and extreme temperature and pressure on the surface of Mars make the development of life difficult. Within this hostile environment, scientists are searching for "friendlier" niches that could encourage life. One of the candidates is the salt deposits.


The natrojarosite precipitates of Río Tinto hide microorganisms (green) within their salt microniches.

Credit: F. Gómez / CAB

A team from the Centre of Astrobiology (CAB, INTA-CSIC) has analysed this kind of environment on Earth: the salt deposits associated to a mineral with sulphur and iron named natrojarosite. It can be found in the Río Tinto basin in Huelva and is very similar to one detected on Mars: jarosite. Its presence reveals the past or present existence of water.

"The salt deposits are good 'hosts' for biological remains and even life itself in extreme circumstances," as outlined to SINC by Felipe Gómez, coauthor of the study published in the 'Planetary and Space Science'.

"The reason is that conditions in this environment remain less adverse than those of their surroundings given that they provide protection from radiation for example, and they keep moisture levels higher than outside," explains the researcher.

With the help of microscopic techniques and molecular ecology, the team has discovered a film of bacteria and algae living in salt 'microniches' invisible to the naked eye. Up to five different morphologies have been found of microorganisms belonging to the Dunaliella and Cyanidium genera.

The deposits analysed have been formed by layers each with a width of just a few millimetres. They make up a "completely different" ecosystem to the strange environment of Río Tinto.

"The precipitated minerals could only have been formed in such an acidic environment like this one and it is still even home to microbial communities in development. In order words, here they find their ideal environment," says Gómez.

According to the study, "the discovery of these protected microniches in one of Mars' analogue on Earth, like Río Tinto, is an important step in evaluating the habitability potential of the red planet."

NASA's Mars Global Surveyor probe has already detected alluvial fan-shaped salt formations on the Martian surface and scientists believe that that they could exist below the frozen ocean of one of Jupiter's satellites, Europa.

"From the astrological point of view, salt deposits are of great importance and should be considered when searching for life on space exploration missions, like the current Curiosity rover mission on Mars," concludes Gómez. In fact, salt deposits of astrobiological interest have been found not far from where the NASA rover is.

On Earth the CAB team has also studied extreme salt environments in Chott el Djerid Lake (Tunisia) and under the Atacama Desert (Chile).

References:

F. Gómez, J.A. Rodríguez-Manfredi, N. Rodríguez, M. Fernández-Sampedro, F.J. Caballero-Castrejón, R. Amils. "Habitability: Where to look for life? Halophilic habitats: Earth analogs to study Mars habitability". Planetary and Space Science 68 (1): 48, 2012.

SINC | EurekAlert!
Further information:
http://www.agenciasinc.es

More articles from Physics and Astronomy:

nachricht A chip for environmental and health monitoring
15.12.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht New type of smart windows use liquid to switch from clear to reflective
14.12.2017 | The Optical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

New technique could make captured carbon more valuable

15.12.2017 | Life Sciences

First-of-its-kind chemical oscillator offers new level of molecular control

15.12.2017 | Life Sciences

A chip for environmental and health monitoring

15.12.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>