Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rutgers Physics Professors Find New Order in Quantum Electronic Material

31.01.2013
May open door to new kinds of materials, magnets and superconductors
Two Rutgers physics professors have proposed an explanation for a new type of order, or symmetry, in an exotic material made with uranium – a theory that may one day lead to enhanced computer displays and data storage systems and more powerful superconducting magnets for medical imaging and levitating high-speed trains.

Their discovery, published in this week’s issue of the journal Nature, has piqued the interest of scientists worldwide. It is one of the rare theory-only papers that this selective publication accepts. Typically the journal’s papers describe results of laboratory experimentation.

Collaborating with the Rutgers professors was a postdoctoral researcher at Massachusetts Institute of Technology (MIT) who earned her doctorate at Rutgers.

“Scientists have seen this behavior for 25 years, but it has eluded explanation.” said Piers Coleman, professor in the Department of Physics and Astronomy in the School of Arts and Sciences. When cooled to 17.5 degrees above absolute zero or lower (a bone-chilling minus 428 degrees Fahrenheit), the flow of electricity through this material changes subtly.

The material essentially acts like an electronic version of polarized sunglasses, he explains. Electrons behave like tiny magnets, and normally these magnets can point in any direction. But when they flow through this cooled material, they come out with their magnetic fields aligned with the material’s main crystal axis.

This effect, claims Coleman, comes from a new type of hidden order, or symmetry, in this material’s magnetic and electronic properties. Changes in order are what make liquid crystals, magnetic materials and superconductors work and perform useful functions.

“Our quest to understand new types of order is a vital part of understanding how materials can be developed to benefit the world around us,” he said.

Similar discoveries have led to technologies such as liquid crystal displays, which are now ubiquitous in flat-screen TVs, computers and smart phones, although the scientists are quick to acknowledge that their theoretical discovery won’t transform high-tech products overnight.

Coleman, along with Rutgers colleague Premala Chandra and MIT collaborator Rebecca Flint, describe what they call a “hidden order” in this compound of uranium, ruthenium and silicon. Uranium is commonly known for being nuclear reactor fuel or weapons material, but in this case physicists value it as a heavy metal with electrons that behave differently than those in common metals.

Recent experiments on the material at the National High Magnetic Field Laboratory at Los Alamos National Laboratory in New Mexico provided the three physicists with data to refine their discovery.

“We’ve dubbed our fundamental new order ‘hastatic’ order, named after the Greek word for spear,” said Chandra, also a professor in the Department of Physics and Astronomy. The name reflects the highly ordered properties of the material and its effect on aligning electrons that flow through it.

“This new category of order may open the world to new kinds of materials, magnets, superconductors and states of matter with properties yet unknown,” she said. The scientists have predicted other instances where hastatic order may show up, and physicists are beginning to test for it.

The scientists’ work was funded by the National Science Foundation and the Simons Foundation. Flint is a Simons Postdoctoral Fellow in physics at MIT.
Media Contact: Carl Blesch
732-932-7084 x616
E-mail: cblesch@ur.rutgers.edu

Carl Blesch | EurekAlert!
Further information:
http://www.rutgers.edu

More articles from Physics and Astronomy:

nachricht Hubble observes one-of-a-kind star nicknamed 'Nasty'
22.05.2015 | NASA/Goddard Space Flight Center

nachricht Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents
22.05.2015 | Universität Basel

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

Im Focus: Into the ice – RV Polarstern opens the arctic season by setting course for Spitsbergen

On Tuesday, 19 May 2015 the research icebreaker Polarstern will leave its home port in Bremerhaven, setting a course for the Arctic. Led by Dr Ilka Peeken from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) a team of 53 researchers from 11 countries will investigate the effects of climate change in the Arctic, from the surface ice floes down to the seafloor.

RV Polarstern will enter the sea-ice zone north of Spitsbergen. Covering two shallow regions on their way to deeper waters, the scientists on board will focus...

Im Focus: Gel filled with nanosponges cleans up MRSA infections

Nanoengineers at the University of California, San Diego developed a gel filled with toxin-absorbing nanosponges that could lead to an effective treatment for skin and wound infections caused by MRSA (methicillin-resistant Staphylococcus aureus), an antibiotic-resistant bacteria. This "nanosponge-hydrogel" minimized the growth of skin lesions on mice infected with MRSA - without the use of antibiotics. The researchers recently published their findings online in Advanced Materials.

To make the nanosponge-hydrogel, the team mixed nanosponges, which are nanoparticles that absorb dangerous toxins produced by MRSA, E. coli and other...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Mesoporous Particles for the Development of Drug Delivery System Safe to Human Bodies

22.05.2015 | Materials Sciences

Computing at the Speed of Light

22.05.2015 | Information Technology

Development of Gold Nanoparticles That Control Osteogenic Differentiation of Stem Cells

22.05.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>