Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers propose technique for measuring weak or nonexistent magnetic fields

09.03.2017

Method could help produce next-generation devices in computing and other fields

Physicists at the University of Iowa have proposed a new technique to detect and measure materials that give off weak magnetic signals or have no magnetic field at all. Their solution would use a noninvasive probe to induce a magnetic response in the material being studied and then detect how that response changes the probe's own magnetic field.


A proposed diamond probe stimulates magnetic moments (aligned electrons) in the material being studied, which then act upon the magnetic field of the probe itself and thus can be measured.

Credit: Michael Flatte, University of Iowa

The technique has many potential real-world applications, including yielding more sensitive magnetic resonance imaging (MRI) machines, developing high-speed-storage memory in the semiconducting industry, and producing more efficient computer processing units (CPUs).

"This approach is designed to measure the situation where if you didn't have the probe nearby, you'd see nothing. There wouldn't be any magnetic fields at all," says Michael Flatté, physics and astronomy professor and senior author of the paper published in the journal Physical Review Letters. "It's only the probe itself that's causing the presence of the magnetic fields."

The probe does this by creating "magnetic moments" in materials that otherwise would emit a weak magnetic field or have no magnetic field at all. Magnetic moments occur when a group of electrons orient themselves in the same direction, much like tiny compass needles all pointing, say, north.

That uniform orientation creates a tiny magnetic field. Iron, for example, produces a strong response because most of its electrons get oriented in the same direction when it encounters a magnetic force.

All it takes for the probe, which is just a few nanomaters in diameter, to create a magnetic moment is for two of its six electrons to snap to the same directional orientation. When that happens, the probe stimulates enough electrons in materials with weak or nonexistent magnetic fields to re-orient themselves, creating a magnetic moment in the material--or just enough of one--that the probe can detect. How the material's magnetic moment influences the probe's own magnetic field is measurable, which gives researchers the means to calculate the material's physical dimensions, such as its thickness.

"These electrons (in materials with weak or nonexistent magnetic fields) have their own field that acts back on the probe and distorts the probe (in a way) that you can then measure," says Flatté, director of the UI's Optical Science Technology Center.

This becomes important when trying to capture the dimensions of magnetic layers that are buried or sandwiched between nonmagnetic layers. Such situations arise when working with semiconductors and will increase as computer processing advances.

"We calculate the magnetic response, and from that we would know where the magnetic fields end and thus know the layer thickness," Flatté says.

The concept builds upon an emerging sampling approach called nitrogen-vacancy center magnetometry. This technique, which relies upon an introduced defect in a diamond's crystal structure (subbing in a nitrogen atom for two carbon atoms), is effective in part because the probe it uses (like the proposed UI probe) is made of diamond, which creates small magnetic moments key to detecting magnetic fields in the studied materials.

But there is a drawback: Nitrogen-vacancy center magnetometry only works with magnetized materials. That rules out superconductors, where the magnetic field ceases to exist at certain temperatures, and many other materials. Flatté and co-author Joost van Bree's proposed solution gets around that by using the probe to create a magnetic field that forces materials with weak or nonexistent magnetic fields to react to it.

"If you apply a magnetic field to a superconductor, it will attempt to cancel that magnetic field applied to it," Flatté says. "Even though it's doing that, it creates a magnetic field outside of itself that then affects the spin centers. That's what then can be detected."

###

The U.S. Air Force's Office of Scientific Research, through a Multidisciplinary University Research Initiative grant to Flatté, funded the research.

Media Contact

Richard Lewis
richard-c-lewis@uiowa.edu
319-384-0012

 @uiowa

http://www.uiowa.edu 

Richard Lewis | EurekAlert!

More articles from Physics and Astronomy:

nachricht Quantum optics allows us to abandon expensive lasers in spectroscopy
22.11.2017 | Lomonosov Moscow State University

nachricht Nano-watch has steady hands
22.11.2017 | University of Vienna

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>