Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers move closer to understanding chaotic motion of a solid body in a fluid

24.02.2010
In a paper appearing in the Feb. 24 issue of the Proceedings of the Royal Society of London A, Virginia Tech Engineering Science and Mechanics Professor Hassan Aref, and his colleague Johan Roenby at the Technical University of Denmark shed new light on the chaotic motion of a solid body moving through a fluid.

They claim to have discovered two basic mechanisms that lead to chaotic motion of the body as it interacts with its vortex wake. The work may lead to better understanding and control of real body-vortex interactions.

Although it goes back to the work of Henri Poincaré at the end of the 19th century, chaos emerged in earnest as a new concept in science in the 1960s. Scientists then realized that even very simple systems, governed by perfectly deterministic laws, could have very complicated and seemingly random behavior. Anyone who has played with dice literally has had hands-on experience with the high sensitivity to initial conditions exhibited by a chaotic system. This makes long-term prediction of the system's evolution virtually impossible, Aref and Roenby explained.

It has long been known that the motion of a solid object through a fluid may be chaotic. Mechanisms that lead to chaotic motion in such systems are important, sometimes because one wants to avoid them, at other times because one wants to exploit them. For instance, when designing aircraft, one strives to prevent chaotic motion, whereas it might be a good strategy for a prey trying to escape a predator to enter a regime of erratic, unpredictable motion.

Fluid-body interactions are not very well understood. It is, however, reasonably well established that the delicate interplay between the body and the vortices shed from it, and present in the fluid, plays a key role. For example, it may be shown that if the motion is strictly two-dimensional and there are no vortices, chaos cannot occur. Chaos can occur for three-dimensional motion of a solid body through a fluid even in the absence of vortices.

To understand how vortices may create chaos in the body motion, Aref and Roenby studied a simplified body-vortex interaction model. The simplicity of the model allowed the scientists to take well-known, non-chaotic solutions as the starting point and then slowly increase the influence of parameters that would cause chaos to occur. It was by triggering the chaos in this controlled manner that the authors discovered two sources of chaos in the model.

The work "shows how a chaotic region grows from a specific type of equilibrium," the authors claimed. Aref and Roenby knew from classical hydrodynamics that a body in an "unbounded, ideal liquid has a limiting motion between the rocking and tumbling regime. Adding a vortex to this effectively acts as a random torque on the body." This is one mechanism for chaos. The other chaotic regime arises when the body is made slightly non-circular. For certain parameter regimes this renders the vortex motion, and thereby its force on the body, chaotic. "The kind of parametric scans we have performed may give important clues as to which geometries and parameter regimes to avoid, if one wants to prevent chaotic motion", the authors said.

As Aref, Roenby and others unravel the forces that come into play when vortices are produced through interaction between a solid body and the fluid surrounding it, they are furthering the understanding of aerodynamic and hydrodynamic forces, the drag and lift that are paramount in virtually all motion of bodies through air or water.

YouTube videos on the work can be found at http://www.youtube.com/user/JohanRoenbyPedersen

Aref is Virginia Tech's Reynolds Metals Professor of Engineering Science and Mechanics. He also holds a Niels Bohr Visiting Professorship at the Technical University of Denmark. Roenby is a Ph.D. student in the mathematics department and the Center for Fluid Dynamics at the Danish University. He is currently a visiting scholar at Imperial College, London.

Virginia Tech's College of Engineering is internationally recognized for its excellence in 14 engineering disciplines and computer science. As the nation's third largest producer of engineers with baccalaureate degrees, undergraduates benefit from an innovative curriculum that provides a hands-on, minds-on approach to engineering education. It complements classroom instruction with two unique design-and-build facilities and a strong Cooperative Education Program. With more than 50 research centers and numerous laboratories, the college offers its 2,000 graduate students opportunities in advanced fields of study, including biomedical engineering, state-of-the-art microelectronics, and nanotechnology.

Lynn Nystrom | EurekAlert!
Further information:
http://www.vt.edu
http://www.eng.vt.edu/main/index.php

More articles from Physics and Astronomy:

nachricht Applicability of dynamic facilitation theory to binary hard disk systems
08.12.2016 | Nagoya Institute of Technology

nachricht Will Earth still exist 5 billion years from now?
08.12.2016 | KU Leuven

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>