Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers Holding Steady in an Atomic-Scale Tug-of-War

How hard do you have to pull on a single atom of—let’s say—gold to detach it from the end of a chain of like atoms?*

It’s a measure of the astonishing progress in nanotechnology that questions that once would have interested only physicists or chemists are now being asked by engineers. To help with the answers, a research team at the National Institute of Standards and Technology (NIST) has built an ultra-stable instrument for tugging on chains of atoms, an instrument that can maneuver and hold the position of an atomic probe to within 5 picometers, or 0.000 000 000 5 centimeters.**

The basic experiment uses a NIST-designed instrument inspired by the scanning tunneling microscope (STM). The NIST instrument uses as a probe a fine, pure gold wire drawn out to a sharp tip. The probe is touched to a flat gold surface, causing the tip and surface atoms to bond, and gradually pulled away until a single-atom chain (see figure) is formed and then breaks. The trick is to do this with such exquisite positional control that you can tell when the last two atoms are about to separate, and hold everything steady; you can at that point measure the stiffness and electrical conductance of the single-atom chain, before breaking it to measure its strength.

The NIST team used a combination of clever design and obsessive attention to sources of error to achieve results that otherwise would require heroic efforts at vibration isolation, according to engineer Jon Pratt. A fiber-optic system mounted just next to the probe uses the same gold surface touched by the probe as one mirror in a classic optical interferometer capable of detecting changes in movement far smaller than the wavelength of light. The signal from the interferometer is used to control the gap between surface and probe. Simultaneously, a tiny electric current flowing between the surface and probe is measured to determine when the junction has narrowed to the last two atoms in contact. Because there are so few atoms involved, electronics can register, with single-atom sensitivity, the distinct jumps in conductivity as the junction between probe and surface narrows.

The new instrument can be paired with a parallel research effort at NIST to create an accurate atomic-scale force sensor—for example, a microscopic diving-board-like cantilever whose stiffness has been calibrated on NIST’s Electrostatic Force Balance. Physicist Douglas Smith says the combination should make possible the direct measurement of force between two gold atoms in a way traceable to national measurement standards. And because any two gold atoms are essentially identical, that would give other researchers a direct method of calibrating their equipment. “We’re after something that people that do this kind of measurement could use as a benchmark to calibrate their instruments without having to go to all the trouble we do, " Smith says. "What if the experiment you’re performing calibrates itself because the measurement you’re making has intrinsic values? You can make an electrical measurement that’s fairly easy and by observing conductance you can tell when you’ve gotten to this single-atom chain. Then you can make your mechanical measurements knowing what those forces should be and recalibrate your instrument accordingly.”

In addition to its application to nanoscale mechanics, say the NIST team, their system’s long-term stability at the picometer scale has promise for studying the movement of electrons in one-dimensional systems and single-molecule spectroscopy.

* The answer, calculated from atomic models, should be something under 2 nanonewtons, or less than 0.000 000 007 ounces of force.

** D.T. Smith, J.R. Pratt, F. Tavazza, L.E. Levine and A.M. Chaka. An ultra-stable platform for the study of single-atom chains. J. Appl. Phys., in press, March, 2010.

Michael Baum | Newswise Science News
Further information:

More articles from Physics and Astronomy:

nachricht First results of NSTX-U research operations
26.10.2016 | DOE/Princeton Plasma Physics Laboratory

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

3-D-printed structures shrink when heated

26.10.2016 | Materials Sciences

Indian roadside refuse fires produce toxic rainbow

26.10.2016 | Health and Medicine

First results of NSTX-U research operations

26.10.2016 | Physics and Astronomy

More VideoLinks >>>