Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research contributes to defense of Earth's technologies

05.06.2009
Leicester scientists implement a new radar mode to create clearer picture of space weather

University of Leicester researchers have taken a step forward in helping to create a defence for earth's technologies –from the constant threat of space weather.

They have implemented a "double pulse" radar-operating mode on two radars, which form part of a global network of ground based coherent scatter radars called SuperDARN (Super Dual Auroral Radar Network).

These radars allow observations of space weather, which can have devastating impacts for technologies on earth.

James Borderick, of the Radio and Space Plasma Physics group, within the Department of Physics and Astronomy, said: "Intense space weather events are triggered by the explosive release of energy stored in the Sun's magnetic fields.

"A strong burst of electromagnetic energy reaches the Earth with the potential to disrupt many of our fundamental services, such as satellite and aviation operations, navigation, and electricity power grids. Telecommunications and information technology are likewise vulnerable to space weather.

"All modern societies rely heavily on space systems, for communications and resource information (meteorological, navigation and remote sensing). There are high cost and high risks associated with the consequences of space weather events, as insurance companies recognise.

"We have implemented a new "double pulse" radar-operating mode on the Radio Space Plasma Physics Group's Co-operative UK Twin Located Auroral Sounding System (CUTLASS) radars.

"The new sounding mode enhances our temporal resolution of plasma irregularities within the ionosphere. The resolution increase may help our understanding of coupling processes between the solar wind and the Earth's magnetosphere by allowing the observation of smaller scale phenomena with an unprecedented resolution.

"Utilising our new radar mode and the vastness of ground based and space based instruments at our disposal, we are ever increasing our understanding of the countless phenomena associated with the Solar-Terrestrial interaction, and one day, may lead us to the accurate predictions of intense weather events- and an active defence."

The research introduces the importance of utilising ground-based measurements of the near space environment in conjunction with spacecraft observations and then proceeds to explain the direct influences of space weather on our own technological systems.

Mr Borderick will be presenting his doctoral research at the Festival of Postgraduate Research, which is taking place on Thursday 25th June in the Belvoir Suite, Charles Wilson Building between 11.30am and 1pm.

J.D. Borderick | EurekAlert!
Further information:
http://www.le.ac.uk

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>