Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Quantum physics 'rules' -- Australian scientists create world's most accurate 'ruler'

NEVER try telling a quantum physicist that near enough is good enough – Australian researchers have invented a technique that, for the first time, measures lengths as accurately as the laws of physics allow.

In a paper published in leading international science journal Nature today (15/11/07 UK time) the research team revealed a system that uses individual photons – single particles of light – as a ruler for microscopic distances.

The experiment was performed in the laboratory of Dr Geoff Pryde at Griffith University's Centre for Quantum Dynamics, by him and his PhD student Brendon Higgins. Centre Director, Professor Howard Wiseman, developed the theory, together with University of Sydney's Dr Stephen Bartlett and Macquarie University's Dr Dominic Berry.

Pryde’s apparatus used single photons, with each photon making a number of passes through the sample being measured.

Using just 36 photons making a total of 378 passes, the team was able to measure length differences less than one ten thousandth of the width of a human hair.

“This is an incredibly small amount of light.” said Pryde. “For comparison, scanning a barcode uses quadrillions of photons. Even the dim standby light on your DVD player shines out many trillions of photons a second.”

"Similar schemes based on interferometry – a technique using waves of electromagnetic radiation such as light – have been used for centuries to measure length, and other properties of objects, with great accuracy." said Wiseman.

"The key difference is we have done it in a way that gets as much information out of each pass of a photon through the sample as is allowed by Heisenberg's uncertainty principle. In this sense, it’s the best measurement possible – something that’s never been done before."

"The obvious applications are in making accurate measurements using less light than was previously thought possible. This is particularly important in fields such as medical research, as passing light through a biological sample can damage it," said Pryde.

So why do we need to measure with such accuracy"

"Measurement underpins all science, and through history we've seen that advances in precision measurement lead to unexpected scientific discoveries, which in turn lead to new technologies and applications," Pryde said.

"Old-style interferometers taught us that the Earth wasn’t moving through a mysterious substance called 'aether', but actually through a vacuum. This ultimately led to Einstein’s theory of relativity. We don’t know yet where this new technique will lead us.”

The team's next goal is to use more single photons and passes to get an even finer measurement.

"In principle this is possible, but there are some technological hurdles to overcome first!” said Pryde.


In the strange world of quantum physics, a photon can simultaneously take two different paths to the same destination. Where the photon goes next depends on the difference between the lengths of the two paths. If the length of one path is known, this allows scientists to measure the length of the other path with great accuracy. The novel feature of the Griffith experiment is to make the photon retrace the paths many times before detecting it. This amplifies the effect of the difference in path lengths. The same idea can also be applied to measuring other quantities like speed, frequency, and time.

The technique combined concepts from research in quantum computers (through Australia’s Centre for Quantum Computer Technology), in quantum control, and in quantum communication. “This is a great example of ideas coming together from different directions to make something new and exciting,” said Bartlett.

Jeannette Langan | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1
21.03.2018 | Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR

nachricht Taming chaos: Calculating probability in complex systems
21.03.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>