Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicist's innovative technique makes atomic-level microscopy at least 100 times faster

12.11.2007
Using an existing technique in a novel way, Cornell physicist Keith Schwab and colleagues at Cornell and Boston University have made the scanning tunneling microscope (STM) -- which can image individual atoms on a surface -- at least 100 times faster.

The simple adaptation, based on a method of measurement currently used in nano-electronics, could also give STMs significant new capabilities -- including the ability to sense temperatures in spots as small as a single atom, and to detect changes in position as tiny as 0.00000000000001 meters: a distance 30,000 times smaller than the diameter of an atom.

The finding is described in the Nov. 1 issue of the journal Nature.

The STM uses quantum tunneling, or the ability of electrons to "tunnel" across a barrier, to detect changes in the distance between a needlelike probe and a conducting surface. Researchers apply a tiny voltage to the sample and move the probe -- a simple platinum-iridium wire snipped to end in a point just one atom wide -- just a few angstroms (10ths of a nanometer) over the sample's surface. By measuring changes in current as electrons tunnel between the sample and the probe, they can reconstruct a map of the surface topology down to the atomic level.

Since its invention in the 1980s, the STM has enabled major discoveries in fields from semiconductor technology to nano-electronics.

But while current can change in a nanosecond, measurements with the STM are painfully slow. And the limiting factor is not in the signal itself -- it's in the basic electronics involved in analyzing it. A theoretical STM could collect data as fast as electrons can tunnel -- at a rate of one gigahertz, or 1 billion cycles per second of bandwidth. But a typical STM is slowed down by the capacitance, or energy storage, in the cables that make up its readout circuitry -- to about one kilohertz (1,000 cycles per second) or less.

Researchers have tried a variety of complex remedies. But in the end, said Schwab, an associate professor of physics at Cornell, the solution was surprisingly simple. By adding an external source of radio frequency (RF) waves and sending a wave into the STM through a simple network, the researchers showed that it's possible to detect the resistance at the tunneling junction -- and hence the distance between the probe and sample surface -- based on the characteristics of the wave that reflects back to the source.

The technique, called reflectometry, uses the standard cables as paths for high-frequency waves, which aren't slowed down by the cables' capacitance.

"There are six orders of magnitude between the fundamental limit in frequency and where people are operating," said Schwab. With the RF adaptation, speeds increase by a factor of between 100 and 1,000. "Our hope is that we can produce more or less video images, as opposed to a scan that takes forever."

The setup also offers potential for atomic resolution thermometry -- precise measurements of temperature at any particular atom on a surface -- and for motion detection so sensitive it could measure movement of a distance 30,000 times smaller than the size of an atom.

"This STM will be used for a lot of good physics experiments," said Schwab. "Once you open up this new parameter, all this bandwidth, people will figure out ways to use it. I firmly believe 10 years from now there will be a lot of RF-STMs around, and people will do all kinds of great experiments with them."

The research was supported by the National Science Foundation.

Blaine Friedlander | EurekAlert!
Further information:
http://www.cornell.edu

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>