Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UD researchers race ahead with latest spintronics achievement

29.10.2007
Electrical engineers from the University of Delaware and Cambridge NanoTech have demonstrated for the first time how the spin properties of electrons in silicon--the world's most dominant semiconductor, used in electronics ranging from computers to cell phones--can be measured and controlled.

The discovery could dramatically advance the nascent field of spintronics, which focuses on harnessing the magnet-like “spin” property of electrons instead of solely their charge to create exponentially faster, more powerful electronics such as quantum computers.

The experiment, conducted in the laboratory of Ian Appelbaum, assistant professor of electrical and computer engineering at UD, with doctoral student Biqin Huang, and in collaboration with Douwe Monsma, co-founder of Cambridge NanoTech in Cambridge, Mass., is reported in the May 17 issue of the prestigious scientific journal Nature.

In commenting on the UD team's research findings in the “News and Views” section, which also was published in the Nature edition, Igor Zutic of the Department of Physics at the State University of New York at Buffalo, and Jaroslav Fabian, of the Institute of Theoretical Physics at the University of Regensburg in Germany, note, “Modern computers present serious challenges for conventional, silicon-based electronics.

Ever-increasing demands on processor speed, memory storage and power consumption--the era of the laptop that can keep us warm in winter is fast upon us--are forcing researchers to explore unfamiliar territory in the quest for increased performance. In these endeavours, Appelbaum and colleagues report a possibly decisive development: the first demonstration of the transport and coherent manipulation of electron spin in silicon.”

While manipulating electron charge is the basis of the present-day electronics industry, researchers in academia and industry over the past decade have been exploring the capability of electron spin to carry, process and store information. A major goal in spintronics is to reach the precise level of control over electron spin that modern electronics has executed over electron charge.

“An electron has intrinsic angular momentum called spin,” Appelbaum noted. “The first step to making spintronic devices and circuits is to inject more spins of one direction than in the opposite direction into a semiconductor."

Silicon has been the workhorse material of the electronics industry, the transporter of electrical current in computer chips and transistors. Silicon also has been predicted to be a superior semiconductor for spintronics, yet demonstrating its ability to conduct the spin of electrons, referred to as “spin transport,” has eluded scientists--until now.

The world's first silicon spin-transport devices, fabricated and measured in Ian Appelbaum's lab at the University of Delaware. More than 25 individual silicon spin-transport devices are represented, one within each tiny wire grid, on this ceramic chip holder.To provide conclusive evidence of spin transport in silicon, Appelbaum and Huang fabricated small, silicon semiconductor devices using a custom-built, ultra-high vacuum chamber for silicon-wafer bonding.

After spin injection, electrons in the silicon were then subjected to a magnetic field, which caused their spin direction to “precess” or gyrate (much like gravity's effect on a rotating gyroscope), producing tell-tale oscillations in their measurement.

“The processes of precession and dephasing, or decay, are the most unambiguous hallmarks for spin transport. Our work is the first time anyone has shown this effect in silicon,” Appelbaum said.

“It's an important problem to solve because silicon is the most important semiconductor for electronics,” Appelbaum noted. “However, methods that worked for spin detection in other semiconductors failed in silicon.”

Appelbaum said that pursuing the research was a risk worth taking. He credits Monsma with introducing him to hot-electron spin transport and applying it to the problem of spin detection in silicon several years ago when they were postdoctoral fellows together at Harvard University.

Originally, when Appelbaum entered college as an undergraduate at Rensselaer Polytechnic Institute, he thought he wanted to become a physician. But a professor there, Stephen Nettel, turned him on to physics and electrical engineering, and now Appelbaum is teaching his UD students using Nettel's textbook.

So while Appelbaum decided not to become a medical doctor, in some circles he might now be considered, literally, a “spin” doctor.

Click here to launch the animation showing spin injection, transport and precession in the Appelbaum-Huang-Monsma silicon device. Courtesy of Ian Appelbaum.

“We hope we're with spintronics where Bell Labs was with semiconductor electronics in 1948,” Appelbaum said.

That year, Bell announced the invention of the transistor, which laid the foundation for modern electronics.

Appelbaum's research was supported by grants from the U.S. Office of Naval Research and by the Microsystems Technology Office of the Defense Advanced Research Projects Agency (DARPA), which is the central research and development organization for the U.S. Department of Defense.

Tracey Bryant | EurekAlert!
Further information:
http://www.udel.edu

More articles from Physics and Astronomy:

nachricht When helium behaves like a black hole
22.03.2017 | University of Vermont

nachricht Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars
22.03.2017 | International Centre for Radio Astronomy Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>