Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UD researchers race ahead with latest spintronics achievement

29.10.2007
Electrical engineers from the University of Delaware and Cambridge NanoTech have demonstrated for the first time how the spin properties of electrons in silicon--the world's most dominant semiconductor, used in electronics ranging from computers to cell phones--can be measured and controlled.

The discovery could dramatically advance the nascent field of spintronics, which focuses on harnessing the magnet-like “spin” property of electrons instead of solely their charge to create exponentially faster, more powerful electronics such as quantum computers.

The experiment, conducted in the laboratory of Ian Appelbaum, assistant professor of electrical and computer engineering at UD, with doctoral student Biqin Huang, and in collaboration with Douwe Monsma, co-founder of Cambridge NanoTech in Cambridge, Mass., is reported in the May 17 issue of the prestigious scientific journal Nature.

In commenting on the UD team's research findings in the “News and Views” section, which also was published in the Nature edition, Igor Zutic of the Department of Physics at the State University of New York at Buffalo, and Jaroslav Fabian, of the Institute of Theoretical Physics at the University of Regensburg in Germany, note, “Modern computers present serious challenges for conventional, silicon-based electronics.

Ever-increasing demands on processor speed, memory storage and power consumption--the era of the laptop that can keep us warm in winter is fast upon us--are forcing researchers to explore unfamiliar territory in the quest for increased performance. In these endeavours, Appelbaum and colleagues report a possibly decisive development: the first demonstration of the transport and coherent manipulation of electron spin in silicon.”

While manipulating electron charge is the basis of the present-day electronics industry, researchers in academia and industry over the past decade have been exploring the capability of electron spin to carry, process and store information. A major goal in spintronics is to reach the precise level of control over electron spin that modern electronics has executed over electron charge.

“An electron has intrinsic angular momentum called spin,” Appelbaum noted. “The first step to making spintronic devices and circuits is to inject more spins of one direction than in the opposite direction into a semiconductor."

Silicon has been the workhorse material of the electronics industry, the transporter of electrical current in computer chips and transistors. Silicon also has been predicted to be a superior semiconductor for spintronics, yet demonstrating its ability to conduct the spin of electrons, referred to as “spin transport,” has eluded scientists--until now.

The world's first silicon spin-transport devices, fabricated and measured in Ian Appelbaum's lab at the University of Delaware. More than 25 individual silicon spin-transport devices are represented, one within each tiny wire grid, on this ceramic chip holder.To provide conclusive evidence of spin transport in silicon, Appelbaum and Huang fabricated small, silicon semiconductor devices using a custom-built, ultra-high vacuum chamber for silicon-wafer bonding.

After spin injection, electrons in the silicon were then subjected to a magnetic field, which caused their spin direction to “precess” or gyrate (much like gravity's effect on a rotating gyroscope), producing tell-tale oscillations in their measurement.

“The processes of precession and dephasing, or decay, are the most unambiguous hallmarks for spin transport. Our work is the first time anyone has shown this effect in silicon,” Appelbaum said.

“It's an important problem to solve because silicon is the most important semiconductor for electronics,” Appelbaum noted. “However, methods that worked for spin detection in other semiconductors failed in silicon.”

Appelbaum said that pursuing the research was a risk worth taking. He credits Monsma with introducing him to hot-electron spin transport and applying it to the problem of spin detection in silicon several years ago when they were postdoctoral fellows together at Harvard University.

Originally, when Appelbaum entered college as an undergraduate at Rensselaer Polytechnic Institute, he thought he wanted to become a physician. But a professor there, Stephen Nettel, turned him on to physics and electrical engineering, and now Appelbaum is teaching his UD students using Nettel's textbook.

So while Appelbaum decided not to become a medical doctor, in some circles he might now be considered, literally, a “spin” doctor.

Click here to launch the animation showing spin injection, transport and precession in the Appelbaum-Huang-Monsma silicon device. Courtesy of Ian Appelbaum.

“We hope we're with spintronics where Bell Labs was with semiconductor electronics in 1948,” Appelbaum said.

That year, Bell announced the invention of the transistor, which laid the foundation for modern electronics.

Appelbaum's research was supported by grants from the U.S. Office of Naval Research and by the Microsystems Technology Office of the Defense Advanced Research Projects Agency (DARPA), which is the central research and development organization for the U.S. Department of Defense.

Tracey Bryant | EurekAlert!
Further information:
http://www.udel.edu

More articles from Physics and Astronomy:

nachricht First Juno science results supported by University of Leicester's Jupiter 'forecast'
26.05.2017 | University of Leicester

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>