Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ESA tracking support essential to Chinese mission

29.10.2007
The ESA ground station network is being mobilised to provide direct support to China's Chang'E-1 Moon mission. Three ESTRACK stations will be used to track Chang'E-1 on the flight to the Moon and during the critical Moon orbit insertion.

The mission was launched on 24 October 2007 at 10:05 UTC (12:05 CEST) from Launch Pad 3 at the Xichang Satellite Launch Centre in south-west China's Sichuan Province.

Engineers at ESOC, the European Space Operations Centre, in Darmstadt, Germany, will be 'on the loop' - in voice communication - with Chinese mission controllers at BACC, the Beijing Aerospace Command and Control Centre, starting on 1 November.

ESA's 15m European Space Tracking (ESTRACK) network stations at Maspalomas (Spain) and Kourou (French Guiana) will be used at the start of ESA's tracking campaign.

These will be joined later by ESTRACK's DS1 - the giant 35m deep-space station at New Norcia, Australia.

The three will rotate tracking duties during Chang'E-1's cruise to the Moon, and will be in contact during the critical orbit insertion manoeuvres, scheduled for 5, 6 and 7 November.

ESTRACK essential for success

At certain points, Chang'E-1 will not be visible from China's own tracking stations, making ESTRACK support essential for mission success.

"There has been a lot of preparation on the ESTRACK side, but we're ready to go," said John Reynolds, Operations Manager for ESTRACK in support to Chang'E-1.

ESA previously provided ESTRACK services to China for the Double Star mission, which conducted joint studies - together with ESA's Cluster - of the Sun's effects on the Earth's environment.

ESA stations are remotely controlled from the ESTRACK Control Centre (ECC) located at ESOC, and are normally unmanned for routine operations. For Chang'E-1, engineers will be on duty at the three stations involved to provide quick response in the event of any technical problems.

Scientists, engineers and ground control experts from ESOC have spent months working to ensure that Chang'E-1 support goes off without a glitch. Preparations included a series of joint meetings in Beijing and Darmstadt, use of ESOC's reference station for testing, and upgrading station software. ESTRACK controllers have also participated in simulations with their Chinese counterparts.

"ESA's expertise in tracking Chang'E-1 sets the stage for future cooperation with China. The Agency's ESTRACK network is a resource that benefits not only the Agency but also all space science through such international cooperation," said Erik Soerensen, Head of the System Requirements and Validation Section at ESOC.

Extending cooperation and sharing benefits

In return for ESA's tracking services, China will share scientific data generated by the mission and the two agencies will also establish a visitors' programme so that researchers can learn from each other (see New mission to the Moon lifts off).

During ESA's SMART-1 mission, which ended in September 2006, the agency provided China with details of the spacecraft's position and transmission frequencies so that the Chinese could test their tracking stations and ground operation procedures by following it - a part of their preparation for Chang'E-1.

First step in China's Lunar Exploration Program

Chang'E-1 represents the first step in China's plans to land robotic explorers on the Moon before 2020. The spacecraft is large, weighing in at 2350 kg, and it will operate from a low, circular lunar orbit, just 200 km above the surface of the Moon. From here, it will perform its science mission for a full year.

Named after the Chinese goddess of the Moon, Chang'E-1 is the first phase in the China Lunar Exploration Program (CLEP).

This programme is expected to last until around 2020 and the next phase will include a lander and associated rover. Looking farther into the future, plans are being drawn up for a sample return mission to bring lunar rocks to Earth for analysis.

ESA Corporate Communication Offi | idw
Further information:
http://www.esa.int/SPECIALS/Operations/SEMB0DJJX7F_0.html

More articles from Physics and Astronomy:

nachricht New type of smart windows use liquid to switch from clear to reflective
14.12.2017 | The Optical Society

nachricht New ultra-thin diamond membrane is a radiobiologist's best friend
14.12.2017 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>