Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ESA tracking support essential to Chinese mission

29.10.2007
The ESA ground station network is being mobilised to provide direct support to China's Chang'E-1 Moon mission. Three ESTRACK stations will be used to track Chang'E-1 on the flight to the Moon and during the critical Moon orbit insertion.

The mission was launched on 24 October 2007 at 10:05 UTC (12:05 CEST) from Launch Pad 3 at the Xichang Satellite Launch Centre in south-west China's Sichuan Province.

Engineers at ESOC, the European Space Operations Centre, in Darmstadt, Germany, will be 'on the loop' - in voice communication - with Chinese mission controllers at BACC, the Beijing Aerospace Command and Control Centre, starting on 1 November.

ESA's 15m European Space Tracking (ESTRACK) network stations at Maspalomas (Spain) and Kourou (French Guiana) will be used at the start of ESA's tracking campaign.

These will be joined later by ESTRACK's DS1 - the giant 35m deep-space station at New Norcia, Australia.

The three will rotate tracking duties during Chang'E-1's cruise to the Moon, and will be in contact during the critical orbit insertion manoeuvres, scheduled for 5, 6 and 7 November.

ESTRACK essential for success

At certain points, Chang'E-1 will not be visible from China's own tracking stations, making ESTRACK support essential for mission success.

"There has been a lot of preparation on the ESTRACK side, but we're ready to go," said John Reynolds, Operations Manager for ESTRACK in support to Chang'E-1.

ESA previously provided ESTRACK services to China for the Double Star mission, which conducted joint studies - together with ESA's Cluster - of the Sun's effects on the Earth's environment.

ESA stations are remotely controlled from the ESTRACK Control Centre (ECC) located at ESOC, and are normally unmanned for routine operations. For Chang'E-1, engineers will be on duty at the three stations involved to provide quick response in the event of any technical problems.

Scientists, engineers and ground control experts from ESOC have spent months working to ensure that Chang'E-1 support goes off without a glitch. Preparations included a series of joint meetings in Beijing and Darmstadt, use of ESOC's reference station for testing, and upgrading station software. ESTRACK controllers have also participated in simulations with their Chinese counterparts.

"ESA's expertise in tracking Chang'E-1 sets the stage for future cooperation with China. The Agency's ESTRACK network is a resource that benefits not only the Agency but also all space science through such international cooperation," said Erik Soerensen, Head of the System Requirements and Validation Section at ESOC.

Extending cooperation and sharing benefits

In return for ESA's tracking services, China will share scientific data generated by the mission and the two agencies will also establish a visitors' programme so that researchers can learn from each other (see New mission to the Moon lifts off).

During ESA's SMART-1 mission, which ended in September 2006, the agency provided China with details of the spacecraft's position and transmission frequencies so that the Chinese could test their tracking stations and ground operation procedures by following it - a part of their preparation for Chang'E-1.

First step in China's Lunar Exploration Program

Chang'E-1 represents the first step in China's plans to land robotic explorers on the Moon before 2020. The spacecraft is large, weighing in at 2350 kg, and it will operate from a low, circular lunar orbit, just 200 km above the surface of the Moon. From here, it will perform its science mission for a full year.

Named after the Chinese goddess of the Moon, Chang'E-1 is the first phase in the China Lunar Exploration Program (CLEP).

This programme is expected to last until around 2020 and the next phase will include a lander and associated rover. Looking farther into the future, plans are being drawn up for a sample return mission to bring lunar rocks to Earth for analysis.

ESA Corporate Communication Offi | idw
Further information:
http://www.esa.int/SPECIALS/Operations/SEMB0DJJX7F_0.html

More articles from Physics and Astronomy:

nachricht Light-emitting bubbles captured in the wild
28.02.2017 | Georg-August-Universität Göttingen

nachricht Scientists reach back in time to discover some of the most power-packed galaxies
28.02.2017 | Clemson University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New technology offers fast peptide synthesis

28.02.2017 | Life Sciences

WSU research advances energy savings for oil, gas industries

28.02.2017 | Power and Electrical Engineering

Who can find the fish that makes the best sound?

28.02.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>