Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chang'e-1 - new mission to Moon lifts off

25.10.2007
A bold new mission to the Moon was launched today by the Chinese National Space Administration (CNSA). Chang’e-1 blasted off from the Xichang Satellite Launch Centre, Sichuan, atop a Long March 3A rocket.

Chang’e-1 represents the first step in the Chinese ambition to land robotic explorers on the Moon before 2020.

Chang’e-1 has four mission goals to accomplish. The first is to make three-dimensional images of many lunar landforms and outline maps of major lunar geological structures. This mapping will include the first detailed images taken of some regions near the lunar poles.

Chang’e-1 is also designed to analyze the abundance of up to 14 chemical elements and their distribution across the lunar surface. Thirdly it will measure the depth of the lunar soil and lastly it will explore the space weather between the Earth and the Moon.

The spacecraft is large, weighing in at 2350 kg and it will operate from a low, circular lunar orbit, just 200 km above the surface of the Moon. From here, it will perform its science mission for a full year.

ESA is collaborating with the Chinese on this mission by providing spacecraft and ground operations support services to CNSA. The two agencies will also share data and encourage a visitors’ programme so that researchers can learn from each other.

During ESA’s SMART-1 mission, the Agency provided the Chinese with details of the spacecraft's position and transmission frequencies, so that the Chinese could test their tracking stations and ground operations by following it. This was part of their preparation for Chang’e-1. Now it is time for Chang’e-1 itself to fly.

Hermann Opgenoorth, Head of ESA’s Solar System Missions Division says, “Participation in Chang’e-1 gives European scientists and ESA experts a welcome opportunity to maintain and pass on their expertise and to continue their scientific work. Based on the experience gained with this first mission, we intended to cooperate on the next missions in China's Chang’e line of lunar explorers.”

To perform its science mission, Chang’e-1 carries a variety of instruments: a CCD stereo camera, a laser altimeter, an imaging interferometer, a gamma-ray/X-ray spectrometer, a microwave radiometer, a high-energy particle detector, and a solar wind particle detector.

Named after the Chinese goddess of the Moon, Chang’e-1 represents the first phase in the Chinese Lunar Exploration Programme (CLEP). This programme is expected to last until around 2020 and the next phase will include a lander and associated rover. Looking farther into the future, plans are being drawn up for a sample return mission to bring lunar rocks to Earth for analysis.

"ESA's expertise in tracking Chang'e-1 sets the stage for future cooperation with China. The Agency's tracking station network, ESTRACK, is a resource that benefits not only the Agency but also all space science through such international cooperation," said Erik Soerensen, Head of the System Requirements and Validation Section at ESA's European Space Operations Centre.

Detlef Koschny | alfa
Further information:
http://www.esa.int/esaSC/SEMPM53Z28F_index_0.html

More articles from Physics and Astronomy:

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>