Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chang'e-1 - new mission to Moon lifts off

25.10.2007
A bold new mission to the Moon was launched today by the Chinese National Space Administration (CNSA). Chang’e-1 blasted off from the Xichang Satellite Launch Centre, Sichuan, atop a Long March 3A rocket.

Chang’e-1 represents the first step in the Chinese ambition to land robotic explorers on the Moon before 2020.

Chang’e-1 has four mission goals to accomplish. The first is to make three-dimensional images of many lunar landforms and outline maps of major lunar geological structures. This mapping will include the first detailed images taken of some regions near the lunar poles.

Chang’e-1 is also designed to analyze the abundance of up to 14 chemical elements and their distribution across the lunar surface. Thirdly it will measure the depth of the lunar soil and lastly it will explore the space weather between the Earth and the Moon.

The spacecraft is large, weighing in at 2350 kg and it will operate from a low, circular lunar orbit, just 200 km above the surface of the Moon. From here, it will perform its science mission for a full year.

ESA is collaborating with the Chinese on this mission by providing spacecraft and ground operations support services to CNSA. The two agencies will also share data and encourage a visitors’ programme so that researchers can learn from each other.

During ESA’s SMART-1 mission, the Agency provided the Chinese with details of the spacecraft's position and transmission frequencies, so that the Chinese could test their tracking stations and ground operations by following it. This was part of their preparation for Chang’e-1. Now it is time for Chang’e-1 itself to fly.

Hermann Opgenoorth, Head of ESA’s Solar System Missions Division says, “Participation in Chang’e-1 gives European scientists and ESA experts a welcome opportunity to maintain and pass on their expertise and to continue their scientific work. Based on the experience gained with this first mission, we intended to cooperate on the next missions in China's Chang’e line of lunar explorers.”

To perform its science mission, Chang’e-1 carries a variety of instruments: a CCD stereo camera, a laser altimeter, an imaging interferometer, a gamma-ray/X-ray spectrometer, a microwave radiometer, a high-energy particle detector, and a solar wind particle detector.

Named after the Chinese goddess of the Moon, Chang’e-1 represents the first phase in the Chinese Lunar Exploration Programme (CLEP). This programme is expected to last until around 2020 and the next phase will include a lander and associated rover. Looking farther into the future, plans are being drawn up for a sample return mission to bring lunar rocks to Earth for analysis.

"ESA's expertise in tracking Chang'e-1 sets the stage for future cooperation with China. The Agency's tracking station network, ESTRACK, is a resource that benefits not only the Agency but also all space science through such international cooperation," said Erik Soerensen, Head of the System Requirements and Validation Section at ESA's European Space Operations Centre.

Detlef Koschny | alfa
Further information:
http://www.esa.int/esaSC/SEMPM53Z28F_index_0.html

More articles from Physics and Astronomy:

nachricht Four elements make 2-D optical platform
26.09.2017 | Rice University

nachricht The material that obscures supermassive black holes
26.09.2017 | Instituto de Astrofísica de Canarias (IAC)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>