Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cassini on the trail of a runaway mystery

09.10.2007
Scientists are on the trail of Iapetus' mysterious dark side, which seems to be home to a bizarre 'runaway' process that is transporting vaporised water ice from the dark areas to the white areas of the Saturnian moon.
This 'thermal segregation' model may explain many details of the moon's strange and dramatically two-toned appearance, which have been revealed in exquisite detail in images collected during Cassini’s recent close fly-by of Iapetus.

Infrared observations from the fly-by confirm that the dark material is warm enough (approximately -146°C or 127 Kelvin) for very slow release of water vapour from water ice, and this process is probably a major factor in determining the distinct brightness boundaries.

"The side of Iapetus that faces forward in its orbit around Saturn is being darkened by some mysterious process," said John Spencer, Cassini scientist with the composite infrared spectrometer team from the Southwest Research Institute, USA.

Using multiple instruments on Cassini, scientists are piecing together a complex story to explain the countenance of Iapetus. But yet to be fully understood is where the black material is coming from. Is it native or from outside the moon? It has long been hypothesised that this material did not originate from within Iapetus but was derived from other moons orbiting at a much greater distance from Saturn in a direction opposite to Iapetus.

Scientists are now converging on the notion that the darkening process in fact began in this manner, and that thermal effects subsequently enhanced the contrast to what we see today.

"It's interesting to ponder that a more than 30 year-old idea might still help explain the brightness difference on Iapetus," said Tilmann Denk, Cassini imaging scientist at the Free University in Berlin, Germany. "Dusty material spiraling in from outer moons hits Iapetus head-on, and causes the forward-facing side of Iapetus to look slightly different than the rest of the moon," said Denk.

Once the leading side is even slightly dark, thermal segregation proceeds rapidly. A dark surface will absorb more sunlight and warm up, explains Spencer, so the water ice on the surface evaporates. The water vapour then condenses on the nearest cold spot, which could be Iapetus’s poles, and possibly bright icy areas at lower latitudes on the side of the moon facing in the opposite direction of its orbit. So the dark stuff loses its surface ice and gets darker, and the bright stuff accumulates ice and gets brighter, in a runaway process.

Scientists say the result is that there are virtually no shades of grey on Iapetus. There is only very black, and white. Ultraviolet data show there is also a non-ice component in the bright, white regions of Iapetus. Spectroscopic analysis will reveal whether the composition of the material on the dark hemisphere is the same as the dark material that is present within the bright terrain.

"The ultraviolet data tells us a lot about where the water ice is and where the non-water ice stuff is. At first glance, the two populations do not appear to be present in the pattern we expected, which is very interesting," said Amanda Hendrix, Cassini scientist on the ultraviolet imaging spectrograph team at NASA's Jet Propulsion Laboratory, USA.

Because of the presence of very small craters which excavate the bright ice beneath, scientists also believe that the dark material is thin, a result consistent with previous Cassini radar results. But some local areas may be thicker. The dark material seems to lie on top of the bright region, consistent with the idea that it is a residual left behind by the sublimated water ice.

Solutions to other mysteries are coming together. There is more data on Iapetus' signature mountain ridge that gives the moon its 'walnut-like' appearance. In some places it appears subdued. One big question that remains is why it does not go all the way around. Was it partially destroyed after it formed, or did it never extend all the way around the moon? Scientists have ruled out that it is a youthful feature because it is pitted with craters, indicating it is old. And the ridge looks too solid and competent to be the result of an equatorial ring around the moon collapsing onto its surface. The ring theory cannot explain what look like tectonic structures in the new high resolution images.

Over the next few months scientists hope to learn more about Iapetus' mysteries by further analysing available data.

Jean-Pierre Lebreton | alfa
Further information:
http://www.esa.int/SPECIALS/Cassini-Huygens/SEMQE3V7D7F_0.html

More articles from Physics and Astronomy:

nachricht Heating quantum matter: A novel view on topology
22.08.2017 | Université libre de Bruxelles

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>