Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Model a Cornucopia of Earth-sized Planets

26.09.2007
In the Star Wars movies fictional planets are covered with forests, oceans, deserts, and volcanoes. But new models from a team of MIT, NASA, and Carnegie scientists begin to describe an even wider range of Earth-size planets that astronomers might actually be able to find in the near future.

Sara Seager, Massachusetts Institute of Technology, Cambridge, Mass.; Marc Kuchner, NASA Goddard Space Flight Center, Greenbelt, Md.; Catherine Hier-Majumder, Carnegie Institution of Washington, (deceased); and Burkhard Militzer, Carnegie, have created models for 14 different types of solid planets that might exist in our galaxy. The 14 types have various compositions, and the team calculated how large each planet would be for a given mass. Some are pure water ice, carbon, iron, silicate, carbon monoxide, and silicon carbide; others are mixtures of these various compounds.

"We’re thinking seriously about the different kinds of roughly Earth-size planets that might be out there, like George Lucas, but for real," says Kuchner.

The team took a different approach from previous studies. Rather than assume that planets around other stars are scaled-up or scaled-down versions of the planets in our solar system, they considered all types of planets that might be possible, given what astronomers know about the composition of protoplanetary disks around young stars.

"We have learned that extrasolar giant planets often differ tremendously from the worlds in our solar system, so we let our imaginations run wild and tried to cover all the bases with our models of smaller planets," says Kuchner. "We can make educated guesses about where these different kinds of planets might be found. For example, carbon planets and carbon-monoxide planets might favor evolved stars such as white dwarfs and pulsars, or they might form in carbon-rich disks like the one around the star Beta Pictoris. But ultimately, we need observations to give us the answers."

The team calculated how gravity would compress planets of varying compositions. The resulting computer models predict a planet’s diameter for a given composition and mass. For example, a 1-Earth-mass planet made of pure water will be about 9,500 miles across, whereas an iron planet with the same mass will be only about 3,000 miles in diameter. For comparison, Earth, which is made mostly of silicates, is 7,926 miles across at its equator.

Some of the results were expected, such as the fact that pure water planets (similar to the moons of the outer planets in our solar system, which consist mostly of water ice) were the least dense of the solid planets, and pure iron planets are the most dense. But there were some surprises. The team discovered that no matter what material a planet is made of, the mass/diameter relationship follows a similar pattern.

"All materials compress in a similar way because of the structure of solids," explains Seager. "If you squeeze a rock, nothing much happens until you reach some critical pressure, then it crushes. Planets behave the same way, but they react at different pressures depending on the composition. This is a big step forward in our fundamental understanding of planets."

The team hopes that these models will yield insights into planet compositions when astronomers start finding Earth-sized planets around other stars. Missions such as the French Corot satellite, which launched on December 27, 2006, and NASA’s Kepler spacecraft, scheduled to launch in 2009, can find planets not much larger than Earth by watching them pass in front of their host stars, events known as transits. The transits yield the planet’s size, and follow-up studies can measure the mass. By comparing a planet's size and mass, astronomers might be able to determine whether it is mostly water ice or mostly iron, for example.

But astronomers using the transit method will find it difficult at best to distinguish a silicate planet from a carbon planet, because they’re about the same size for a given mass. "To make this finer distinction, we will need some help from NASA’s James Webb Space Telescope or Terrestrial Planet Finder," says Kuchner. "With these instruments, we could take spectra of Earth-mass planets, which will tell us about their chemistries."

The team’s paper is currently scheduled to appear in the October 20 issue of the Astrophysical Journal.

Robert Naeye | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Physics and Astronomy:

nachricht New type of smart windows use liquid to switch from clear to reflective
14.12.2017 | The Optical Society

nachricht New ultra-thin diamond membrane is a radiobiologist's best friend
14.12.2017 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>