Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT tether could aid asteroid missions

26.09.2007
Using a tether system devised by MIT researchers, astronauts could one day stroll across the surface of small asteroids, collecting samples and otherwise exploring these rocks in space without floating away.

The ability to visit asteroids could also be invaluable for testing equipment for a mission to Mars by humans. Further, knowing how to tether an asteroid could be helpful if one needs to be towed away from a potential collision course with Earth, says Christopher Carr, a postdoctoral associate in MIT's Department of Earth, Atmospheric and Planetary Sciences.

Carr and Ian Garrick-Bethell, a graduate student in the department, describe their system in an upcoming issue of the journal Acta Astronautica.

Walking on an asteroid is much more difficult than walking on a planet because asteroids have so little gravity. An astronaut who tried to step onto one would likely fly off or hover above the surface.

Now Carr and Garrick-Bethell say that tying a lightweight rope completely around an asteroid could solve that problem. Once the rope was in place, astronauts could attach themselves to it and maneuver or possibly even walk along the surface.

That would allow an in-depth exploration of the composition and history of asteroids, which could shed light on some of the big questions about our solar system, such as how the planets formed, said Carr.

"This is an innovative approach to a task nobody has spent much time thinking about," said former astronaut Jeffrey Hoffman, an MIT professor of aeronautics and astronautics who sponsored the paper. "NASA has taken a brief look at a human visit to a Near Earth Object, and it may be something we can do long before going to Mars. Clever ideas will be necessary to allow people to do useful work near objects on which you cannot 'land,' but only 'dock.'"

An asteroid's gravity varies depending on its density and size, which can range from a speck of dust to hundreds of kilometers. On an asteroid that has a diameter larger than eight kilometers, an astronaut who jumps will probably come back to the surface, Carr said. But if the asteroid is smaller than that, the astronaut may float away.

Even if an asteroid has enough gravity to keep an astronaut on the surface, it would be difficult to move around or collect samples. "You couldn't touch anything without sending yourself on a new trajectory or spinning yourself around," said Garrick-Bethell, who is the first author of the Acta Astronautica paper.

Some people have suggested that astronauts could bolt themselves directly to the asteroid, but the granular material covering the asteroids could prevent this.

"It would be like trying to bolt yourself to a pile of gravel or sand," Garrick-Bethell said.

The MIT researchers envision deploying their system with an astronaut or a remote-controlled rocket that unwinds a spool of rope while flying around the asteroid. When the craft reaches the starting point, a loop is formed and tightened. Astronauts could then be held to the asteroid using one or more ropes, permitting them to work on the surface.

One unknown is whether the rope would cut into the granular surface of an asteroid, hindering the system's effectiveness. But even if the rope does not allow astronauts to walk on the surface, it could at least give them something to hold onto as they pull themselves along the asteroid without floating away, said Carr.

Elizabeth A. Thomson | MIT News Office
Further information:
http://www.mit.edu

More articles from Physics and Astronomy:

nachricht Hubble sees Neptune's mysterious shrinking storm
16.02.2018 | NASA/Goddard Space Flight Center

nachricht Supermassive black hole model predicts characteristic light signals at cusp of collision
15.02.2018 | Rochester Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>