Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT tether could aid asteroid missions

26.09.2007
Using a tether system devised by MIT researchers, astronauts could one day stroll across the surface of small asteroids, collecting samples and otherwise exploring these rocks in space without floating away.

The ability to visit asteroids could also be invaluable for testing equipment for a mission to Mars by humans. Further, knowing how to tether an asteroid could be helpful if one needs to be towed away from a potential collision course with Earth, says Christopher Carr, a postdoctoral associate in MIT's Department of Earth, Atmospheric and Planetary Sciences.

Carr and Ian Garrick-Bethell, a graduate student in the department, describe their system in an upcoming issue of the journal Acta Astronautica.

Walking on an asteroid is much more difficult than walking on a planet because asteroids have so little gravity. An astronaut who tried to step onto one would likely fly off or hover above the surface.

Now Carr and Garrick-Bethell say that tying a lightweight rope completely around an asteroid could solve that problem. Once the rope was in place, astronauts could attach themselves to it and maneuver or possibly even walk along the surface.

That would allow an in-depth exploration of the composition and history of asteroids, which could shed light on some of the big questions about our solar system, such as how the planets formed, said Carr.

"This is an innovative approach to a task nobody has spent much time thinking about," said former astronaut Jeffrey Hoffman, an MIT professor of aeronautics and astronautics who sponsored the paper. "NASA has taken a brief look at a human visit to a Near Earth Object, and it may be something we can do long before going to Mars. Clever ideas will be necessary to allow people to do useful work near objects on which you cannot 'land,' but only 'dock.'"

An asteroid's gravity varies depending on its density and size, which can range from a speck of dust to hundreds of kilometers. On an asteroid that has a diameter larger than eight kilometers, an astronaut who jumps will probably come back to the surface, Carr said. But if the asteroid is smaller than that, the astronaut may float away.

Even if an asteroid has enough gravity to keep an astronaut on the surface, it would be difficult to move around or collect samples. "You couldn't touch anything without sending yourself on a new trajectory or spinning yourself around," said Garrick-Bethell, who is the first author of the Acta Astronautica paper.

Some people have suggested that astronauts could bolt themselves directly to the asteroid, but the granular material covering the asteroids could prevent this.

"It would be like trying to bolt yourself to a pile of gravel or sand," Garrick-Bethell said.

The MIT researchers envision deploying their system with an astronaut or a remote-controlled rocket that unwinds a spool of rope while flying around the asteroid. When the craft reaches the starting point, a loop is formed and tightened. Astronauts could then be held to the asteroid using one or more ropes, permitting them to work on the surface.

One unknown is whether the rope would cut into the granular surface of an asteroid, hindering the system's effectiveness. But even if the rope does not allow astronauts to walk on the surface, it could at least give them something to hold onto as they pull themselves along the asteroid without floating away, said Carr.

Elizabeth A. Thomson | MIT News Office
Further information:
http://www.mit.edu

More articles from Physics and Astronomy:

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

nachricht Physicists discover mechanism behind granular capillary effect
24.05.2017 | University of Cologne

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>