Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fluid theory confirmed by Foton

25.09.2007
In scientific research, there is great satisfaction when theoretical work is eventually supported by experimentation. Such was the case this week for a team of Italian and US scientists when they received preliminary confirmation of a 10-year-old theory from a fluid science experiment that is currently orbiting the Earth on the Foton-M3 spacecraft.

Although the Foton was only launched a week ago, the scientists are already very excited about the data they have received from their experiment, known as GRADFLEX (GRAdient-Driven FLuctuation EXperiment). The first results are qualitatively consistent with detailed theoretical predictions made over the past decade.

All liquids experience minute fluctuations in temperature or concentration as a result of the different velocities of individual molecules. These fluctuations are usually so small that they are extremely difficult to observe.

In the 1990s, scientists discovered that these tiny fluctuations in fluids and gases can increase in size, and even be made visible to the naked eye, if a strong gradient is introduced. One way to achieve this is to increase the temperature at the bottom of a thin liquid layer, though not quite enough to cause convection. Alternatively, by heating the fluid from above, convection is suppressed, making it possible to achieve more accurate measurements.

Although the early research involved ground-based measurements, it was suggested that the fluctuations would become much more noticeable in a weightless environment. Now, thanks to the Foton mission, the opportunity to test this prediction has come about, and the results completely support the earlier forecast.

“The first images from the experiment were downloaded to the Payload Operations Centre in Kiruna, Sweden, and received on Earth after only a few orbits,” explained Professor Marzio Giglio, leader of the team from the Department of Physics and CNR-INFM (Istituto Nazionale per la Fisica della Materia), University of Milan, Italy.

To the delight of the science team, the images visually support the theoretical predictions by showing a very large increase in the size of the fluctuations. Data analysis has also shown that the amplitude of the fluctuations in temperature and concentration greatly increased.

“It is a rare event when a space mission is able to confirm a theoretical prediction in such record time,” said Olivier Minster, Head of ESA’s Physical Sciences Unit. “These results are important because they are the first verification of the effects forecast a decade ago.”

“The availability of these images from the spacecraft has enabled us to change what we are doing so that we can optimise the scientific return from the mission,” said Professor David Cannell of the University of California at Santa Barbara (UCSB). “We will also have many thousands of images to analyse back in our labs after the experiment returns to Earth. This will keep us busy for quite a while.”

“It may be that our results will influence other types of microgravity research, such as the growth of crystals. Our research may even lead to some new technological spin-offs,” said Professor Giglio.

GRADFLEX is one of 43 ESA scientific and technological experiments on board the 12-day Foton-M3 mission. The mission is scheduled to end on 26 September, when the re-entry capsule will return to Earth in Kazakhstan. The onboard experiments will be returned to their home institutions where the data will be carefully analysed over the coming months.

Olivier Minster | alfa
Further information:
http://www.esa.int/esaHS/SEM585C1S6F_index_0.html

More articles from Physics and Astronomy:

nachricht Taking a spin on plasma space tornadoes with NASA observations
20.11.2017 | NASA/Goddard Space Flight Center

nachricht NASA detects solar flare pulses at Sun and Earth
17.11.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Antarctic landscape insights keep ice loss forecasts on the radar

20.11.2017 | Earth Sciences

Filling the gap: High-latitude volcanic eruptions also have global impact

20.11.2017 | Earth Sciences

Water world

20.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>