Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sweet smell

19.09.2007
Weizmann Institute scientists discover the pleasantness of an odor can be predicted from its molecular structure

What makes one smell pleasant and another odious? Is there something in the chemistry of a substance that can serve to predict how we will perceive its smell? Scientists at the Weizmann Institute of Science and the University of California at Berkeley have now discovered that there is, indeed, such a link, and knowing the molecular structure of a substance can help predict whether we will find its smell heavenly or malodorous.

In sight and hearing, for instance, our perceptions are determined by the physical properties of waves – the length of light waves in sight, and the frequency of sound waves in hearing. But until now, there was no known physical factor that could explain how our brains sense odors. The new study, conducted by Prof. Noam Sobel of the Institute’s Neurobiology Department and his colleagues, represents a first step in understanding the physical laws that underlie our perception of smell. Their results appeared last week in the Journal of Neuroscience.

To identify the general principles by which our sense of smell is organized, the researchers began with a database of 160 different odors that had been ranked by 150 perfume and smell experts according to a set of 146 characteristics (sweetish, smoky, musty, etc.). These data were then analyzed with a statistical program that analyzed the variance in perception among the smell experts. The scientists found that the data fell along an axis that describes the 'pleasantness rating' of the odors – running from 'sweet' and 'flowery' at one end to 'rancid' and 'sickening' at the other. The same distribution along this axis, they discovered to their surprise, closely describes the variation in chemical and physical properties from one substance to another. From this, the researchers found they could build a model to predict, from the molecular structure of a substance, how pleasing its smell would be perceived.

To double check their model, Sobel and his team tested how experimental subjects assessed 50 odors they had never smelled before for pleasantness. They found that the ratings of their test subjects fit closely with the ranking shown by their model. In other words, they were able to predict the level of pleasantness quite well, even for unfamiliar smells. They noted that, although preferences for smells are commonly supposed to be culturally learned, their study showed that the responses of American subjects, Jewish Israelis and Muslim-Arab Israelis all fit the model’s predictions to the same extent. Sobel: 'Our findings show that the way we perceive smells is at least partially hard-wired in the brain. Although there is a certain amount of flexibility, and our life experience certainly influences our perception of smell, a large part of our sense of whether an odor is pleasant or unpleasant is due to a real order in the physical world. Thus, we can now use chemistry to predict the perception of the smells of new substances.'

Yivsam Azgad | EurekAlert!
Further information:
http://www.weizmann.ac.il

More articles from Physics and Astronomy:

nachricht Hope to discover sure signs of life on Mars? New research says look for the element vanadium
22.09.2017 | University of Kansas

nachricht Calculating quietness
22.09.2017 | Forschungszentrum MATHEON ECMath

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>