Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sweet smell

19.09.2007
Weizmann Institute scientists discover the pleasantness of an odor can be predicted from its molecular structure

What makes one smell pleasant and another odious? Is there something in the chemistry of a substance that can serve to predict how we will perceive its smell? Scientists at the Weizmann Institute of Science and the University of California at Berkeley have now discovered that there is, indeed, such a link, and knowing the molecular structure of a substance can help predict whether we will find its smell heavenly or malodorous.

In sight and hearing, for instance, our perceptions are determined by the physical properties of waves – the length of light waves in sight, and the frequency of sound waves in hearing. But until now, there was no known physical factor that could explain how our brains sense odors. The new study, conducted by Prof. Noam Sobel of the Institute’s Neurobiology Department and his colleagues, represents a first step in understanding the physical laws that underlie our perception of smell. Their results appeared last week in the Journal of Neuroscience.

To identify the general principles by which our sense of smell is organized, the researchers began with a database of 160 different odors that had been ranked by 150 perfume and smell experts according to a set of 146 characteristics (sweetish, smoky, musty, etc.). These data were then analyzed with a statistical program that analyzed the variance in perception among the smell experts. The scientists found that the data fell along an axis that describes the 'pleasantness rating' of the odors – running from 'sweet' and 'flowery' at one end to 'rancid' and 'sickening' at the other. The same distribution along this axis, they discovered to their surprise, closely describes the variation in chemical and physical properties from one substance to another. From this, the researchers found they could build a model to predict, from the molecular structure of a substance, how pleasing its smell would be perceived.

To double check their model, Sobel and his team tested how experimental subjects assessed 50 odors they had never smelled before for pleasantness. They found that the ratings of their test subjects fit closely with the ranking shown by their model. In other words, they were able to predict the level of pleasantness quite well, even for unfamiliar smells. They noted that, although preferences for smells are commonly supposed to be culturally learned, their study showed that the responses of American subjects, Jewish Israelis and Muslim-Arab Israelis all fit the model’s predictions to the same extent. Sobel: 'Our findings show that the way we perceive smells is at least partially hard-wired in the brain. Although there is a certain amount of flexibility, and our life experience certainly influences our perception of smell, a large part of our sense of whether an odor is pleasant or unpleasant is due to a real order in the physical world. Thus, we can now use chemistry to predict the perception of the smells of new substances.'

Yivsam Azgad | EurekAlert!
Further information:
http://www.weizmann.ac.il

More articles from Physics and Astronomy:

nachricht APEX takes a glimpse into the heart of darkness
25.05.2018 | Max-Planck-Institut für Radioastronomie

nachricht First chip-scale broadband optical system that can sense molecules in the mid-IR
24.05.2018 | Columbia University School of Engineering and Applied Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>