Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

SMART-1 diagnoses wrinkles and excess weight in Humorum and Procellarum basins

23.08.2007
Owing to SMART-1's high resolution and the favourable illumination conditions during the satellite's scientific operations, data from Europe's lunar orbiter is helping put together a story linking geological and volcanic activity on the Moon.

The combination of high resolution data from SMART-1's AMIE micro-camera and data from the US Clementine mission is helping scientists determine the tectonics of the Moon's giant basins and the history of volcanic flooding of mid-sized craters, inside and around the lunar basins.

"Thanks to low-elevation solar illumination on these high resolution images", says SMART-1 Project Scientist Bernard Foing, "it is now possible to study fine, small scale geological features that went undetected earlier."

The study provides new information on the thermal and tectonic history of the Moon and the processes following the formation of the large basins.
There are approximately 50 recognizable lunar basins more than 300 km in diameter. They are believed to be created by the impact of asteroids or comets during the Lunar Late Heavy Bombardment period, 350-750 million years after the formation of the Moon. Some of these basins (mostly on the near

side) were then filled in by lava originating from volcanic activity.

Combining information from SMART-1 and Clementine makes it possible to assess the link between fine geological structures, identified for the first time with AMIE's high resolution, and the chemical composition of the study area.

The Humorum basin is an 'ideal', circular, compact and moderately thick basin that was created by a simple impact event, showing a thin crust and mass concentration within a small area (from Clementine topography and gravity data).

The Procellarum basin, or Oceanus Procellarum, is a large, extended, complex basin that is moderately thick and shows no mass concentration. It may have been formed by faulting associated with the formation of the adjacent Imbrium crater (3.84 thousand million years ago), rather than by a 'gargantuan' impact.

The Humorum basin shows concentric graben, or elongated, trench-like erosional features around the edge of the basin. These are formed as the crust is deformed due to the presence of a mascon (mass concentration or 'local overweight').

"Lunar crust is like a fragile skin, wrinkled due to local mascons or its thermal history", says Bernard Foing, "as doctors, we searched for these skin-imprints but some may be masked underneath the latest basalt layers"

For the first time, strike-slip faults have been observed with SMART-1 in the Humorum basin. These are faults where the rupture is vertical and one side slides past the other. An example is the San Andreas fault along the western United States, however there is no multi-plate tectonic activity on the Moon.

Procellarum is an extended basin, where magma has arisen from under the surface, 4 to 2 thousand million years ago, as the crust is thin enough.

SMART-1 images do not show geological faults, or surfaces where the rock ruptures due to differential movement, in the Procellarum basin.

It however shows wrinkle ridges that are not distributed radially around the basin. Due to their location, they do not seem associated with mascon tectonics, but mostly are results of thermal and mechanical deformation resulting from volcanic activity - basalt extruded by the lava causes compression in the area. The Procellarum basin contains the youngest basalt found on the Moon so far, up to 2 thousand million years old.

Different 'pulses' of volcanic activity in lunar history created units of lava on the surface. The flooding of mid-sized craters with lava due to volcanic activity in the region is reflected in the mineralogical map. Differences in the mineralogical composition provide a tool to study the geological history of the region. Flooded as well as unflooded craters are found in the region, reflecting the evolution of volcanic activity with time.

"This analysis shows the potential of the AMIE camera", says Jean-Luc Josset, Principal Investigator for the AMIE camera, "and we are still analysing other datasets that make use of the varying illumination conditions during the operation of SMART-1 over one and half years".

Anita Heward | alfa
Further information:
http://www.europlanet-eu.org/index.php?option=com_content&task=view&id=109&I

More articles from Physics and Astronomy:

nachricht A single photon reveals quantum entanglement of 16 million atoms
16.10.2017 | Université de Genève

nachricht On the generation of solar spicules and Alfvenic waves
16.10.2017 | Instituto de Astrofísica de Canarias (IAC)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Conference Week RRR2017 on Renewable Resources from Wet and Rewetted Peatlands

28.09.2017 | Event News

 
Latest News

A single photon reveals quantum entanglement of 16 million atoms

16.10.2017 | Physics and Astronomy

The melting ice makes the sea around Greenland less saline

16.10.2017 | Earth Sciences

On the generation of solar spicules and Alfvenic waves

16.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>