Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Frigid Enceladus: An unlikely harbor for life

16.08.2007
A new model of Saturn’s icy moon Enceladus may quell hopes of finding life there. Developed by researchers at the University of Illinois, the model explains the most salient observations on Enceladus without requiring the presence of liquid water.

Orbiting Saturn since June 30, 2004, the Cassini spacecraft has revealed a south polar region of Enceladus with an elaborate arrangement of fractures and ridges, intense heat radiation and geyser-like plumes consisting of ice crystals and gases such as methane, nitrogen and carbon dioxide. The plumes erupt from vents located in large fractures called “tiger stripes” that cut across the south pole.

The plumes monitored by Cassini had a rate of discharge similar to Old Faithful geyser in Yellowstone National Park. Dubbed “Cold Faithful,” the first model that was proposed to explain the plumes suggested the plumes tap into shallow pockets of liquid water in a water-ice shell.

Last year, U. of I. geology professor and planetary scientist Susan Kieffer and colleagues proposed an alternate model, which they called “Frigid Faithful.” In this model, the plumes originate in the dissociation of certain stiff compounds of ice, called clathrates, which may cover Enceladus to a depth of tens of kilometers. The researchers published their model in the Dec. 15, 2006, issue of the journal Science.

“Frigid Faithful gives a straightforward account of the measured composition, including the gases left unaccounted by Cold Faithful,” said Kieffer, who holds a Charles R. Walgreen Jr. Chair at Illinois and is also a professor in the University’s Center for Advanced Study, one of the highest forms of campus recognition.

“Perhaps more important, the plumes of Frigid Faithful could remain active far below the freezing point of water, under the frigid conditions that might be surmised inside a tiny, icy moon,” Kieffer said.

Now, Kieffer, mechanical science and engineering professor Gustavo Gioia, geology research associate Pinaki Chakraborty and geology professor and department head Stephen Marshak have expanded the model to account for both the tectonic features and the heat transport in the southern hemisphere. They describe the model in a paper accepted for publication in the Proceedings of the National Academy of Sciences and posted on the journal’s Web site.

By examining the deformation of a clathrate-rich shell containing a mildly warm heat source buried under the south pole, the researchers show it is possible for a frigid, stiff Enceladus without a shifting interior (such as plate tectonics on Earth) to develop fractures and ridges, and convey heat at the observed rate.

“As the heat source warmed at depth, it expanded and stretched the clathrate-rich shell above, giving rise to tensile stresses in the south polar cap,” said Gioia, lead author of the paper. “As a result, the shell cracked, forming the four 130 kilometer-long fractures known as tiger stripes.”

The researchers estimate the heat source could have been only 40 degrees warmer than the surrounding shell. “In this model, the tiger stripes are analogous to the cracks that form in the glazing of a porcelain vessel when the vessel is filled with hot tea,” Gioia said.

The researchers also show that, northwards of the south polar cap (in which the stresses were tensile), the stresses turned first from tensile to compressive – forming the ring of ridges that circles the tiger stripes – and then back to tensile – forming the set of “starfish” fractures that radiates northward from the ring of ridges. Thus the model explains the formation of the entire arrangement of fractures and ridges observed by Cassini on the southern hemisphere of Enceladus.

The Illinois researchers estimate the tiger stripes cut through the shell of Enceladus to a depth of about 35 kilometers. After the tiger stripes formed, the clathrates exposed on the cracked surfaces of the tiger stripes were decompressed. Upon decompression, the exposed clathrates absorbed heat from the source at depth and dissociated explosively, exposing more clathrates to decompression, in a process that continues today.

The gaseous products of clathrate dissociation rush up the tiger stripes, transporting heat to the surface where they may occasionally leak in the form of plumes. The transport of heat by fast-moving gases is called “heat advection.” The cracked shell of Frigid Faithful acts as a gigantic “advection machine,” which efficiently conveys heat from the source to the surface.

In contrast to “heat conduction”, where the transport of heat (in a bar of steel, for example) can only occur from points at higher temperature towards points at lower temperature, heat advection takes place at a nearly uniform temperature.

The implication is that Frigid Faithful’s shell remains close to the surface temperature to a depth of about 35 kilometers, Gioia said. According to the Cassini measurements, the surface temperature might be as many as 150 degrees below the freezing point of water.

“This is indeed a frigid Enceladus,” Gioia said. “It appears that high heat fluxes, geyser-like activity and complex tectonic features can occur even if moons do not have hot, liquid or shifting interiors.”

While the Enceladus envisioned by the Illinois researchers is unlikely to possess liquid water and therefore unlikely to harbor life, it is compatible with the available evidence and is the only model that has been shown to explain the origin of the arrangement of fractures and ridges documented by Cassini.

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Physics and Astronomy:

nachricht NASA spacecraft investigate clues in radiation belts
28.03.2017 | NASA/Goddard Space Flight Center

nachricht Researchers create artificial materials atom-by-atom
28.03.2017 | Aalto University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>