Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Search for life in Martian ice relies on UK technology

26.07.2007
The Martian surface will be explored for conditions favourable for past or present life thanks to micro-machine technology supplied by Imperial College London. The NASA mission, planned for August 2007, represents the first chance for UK hardware to contribute to the exploration of Mars since the failed Beagle 2 spacecraft launched in 2003.

Dr Tom Pike and his team at Imperial’s Department of Electrical and Electronic Engineering have provided substrates—surfaces used to hold samples for imaging—for the Mars Phoenix mission. These substrates will hold dust and soil for examination in a microscope station attached to the Phoenix lander.

The grains of Martian dust and soil, delivered by a mechanical excavating arm, will be imaged by an optical microscope and an atomic force microscope. Together they will provide the highest resolution of imaging ever taken on another planet.

“Nobody has looked at Mars at this type of resolution. It is very difficult to predict what we might find, but if you wanted to look for the earliest forms of past or present life we will be the first to look closely enough,” said Dr Pike.

The team has been conducting trials on a replica of Phoenix’s microscope station based at Imperial. They have been using the equipment for several months to work out the best way of studying the Martian soil.

They also visited Mission Control at the University of Arizona Tucson USA (14–20 July 2007). As part of the “operational readiness” process Dr Pike and his colleagues spent a week going through a simulation of the actual mission.

The launch date is scheduled for a three-week period after 3 August 2007.
The aim of the NASA mission is to search for potential biological habitable zones. The Phoenix lander is scheduled to touch down on the northern ice-rich polar region known as the Vastitas Borealis. The mission represents the first attempt to actually touch and analyse Martian water in the form of buried ice. The spacecraft will investigate whether frozen water near the Martian surface might periodically melt enough to sustain a habitable zone for primitive microbes.

If Phoenix lands successfully scientists will have three months to complete their tasks. They will race against the clock to dig for, and analyse, materials before the Martian winter sets in and the solar panels no longer provide enough power to run the vehicle.

During the analysis phase Dr Pike and his team will be based at Mission Control. They will be part of the team operating the microscope station.

The construction of the microscope station is an international collaboration with contributions from the U.S., Switzerland, Demark and the UK. The UK involvement is supported by the Science and Technology Facilities Council.

“This is the first chance since the Beagle mission that the UK will be able to help explore the surface of Mars. It is great to have the resources and the people at Imperial to enable us to take part in this mission,” said Dr Pike.

Colin Smith | alfa
Further information:
http://www.imperial.ac.uk

More articles from Physics and Astronomy:

nachricht Innovative LED High Power Light Source for UV
22.06.2017 | Omicron - Laserage Laserprodukte GmbH

nachricht Spin liquids − back to the roots
22.06.2017 | Universität Augsburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>