Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Search for life in Martian ice relies on UK technology

26.07.2007
The Martian surface will be explored for conditions favourable for past or present life thanks to micro-machine technology supplied by Imperial College London. The NASA mission, planned for August 2007, represents the first chance for UK hardware to contribute to the exploration of Mars since the failed Beagle 2 spacecraft launched in 2003.

Dr Tom Pike and his team at Imperial’s Department of Electrical and Electronic Engineering have provided substrates—surfaces used to hold samples for imaging—for the Mars Phoenix mission. These substrates will hold dust and soil for examination in a microscope station attached to the Phoenix lander.

The grains of Martian dust and soil, delivered by a mechanical excavating arm, will be imaged by an optical microscope and an atomic force microscope. Together they will provide the highest resolution of imaging ever taken on another planet.

“Nobody has looked at Mars at this type of resolution. It is very difficult to predict what we might find, but if you wanted to look for the earliest forms of past or present life we will be the first to look closely enough,” said Dr Pike.

The team has been conducting trials on a replica of Phoenix’s microscope station based at Imperial. They have been using the equipment for several months to work out the best way of studying the Martian soil.

They also visited Mission Control at the University of Arizona Tucson USA (14–20 July 2007). As part of the “operational readiness” process Dr Pike and his colleagues spent a week going through a simulation of the actual mission.

The launch date is scheduled for a three-week period after 3 August 2007.
The aim of the NASA mission is to search for potential biological habitable zones. The Phoenix lander is scheduled to touch down on the northern ice-rich polar region known as the Vastitas Borealis. The mission represents the first attempt to actually touch and analyse Martian water in the form of buried ice. The spacecraft will investigate whether frozen water near the Martian surface might periodically melt enough to sustain a habitable zone for primitive microbes.

If Phoenix lands successfully scientists will have three months to complete their tasks. They will race against the clock to dig for, and analyse, materials before the Martian winter sets in and the solar panels no longer provide enough power to run the vehicle.

During the analysis phase Dr Pike and his team will be based at Mission Control. They will be part of the team operating the microscope station.

The construction of the microscope station is an international collaboration with contributions from the U.S., Switzerland, Demark and the UK. The UK involvement is supported by the Science and Technology Facilities Council.

“This is the first chance since the Beagle mission that the UK will be able to help explore the surface of Mars. It is great to have the resources and the people at Imperial to enable us to take part in this mission,” said Dr Pike.

Colin Smith | alfa
Further information:
http://www.imperial.ac.uk

More articles from Physics and Astronomy:

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>