Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Search for life in Martian ice relies on UK technology

26.07.2007
The Martian surface will be explored for conditions favourable for past or present life thanks to micro-machine technology supplied by Imperial College London. The NASA mission, planned for August 2007, represents the first chance for UK hardware to contribute to the exploration of Mars since the failed Beagle 2 spacecraft launched in 2003.

Dr Tom Pike and his team at Imperial’s Department of Electrical and Electronic Engineering have provided substrates—surfaces used to hold samples for imaging—for the Mars Phoenix mission. These substrates will hold dust and soil for examination in a microscope station attached to the Phoenix lander.

The grains of Martian dust and soil, delivered by a mechanical excavating arm, will be imaged by an optical microscope and an atomic force microscope. Together they will provide the highest resolution of imaging ever taken on another planet.

“Nobody has looked at Mars at this type of resolution. It is very difficult to predict what we might find, but if you wanted to look for the earliest forms of past or present life we will be the first to look closely enough,” said Dr Pike.

The team has been conducting trials on a replica of Phoenix’s microscope station based at Imperial. They have been using the equipment for several months to work out the best way of studying the Martian soil.

They also visited Mission Control at the University of Arizona Tucson USA (14–20 July 2007). As part of the “operational readiness” process Dr Pike and his colleagues spent a week going through a simulation of the actual mission.

The launch date is scheduled for a three-week period after 3 August 2007.
The aim of the NASA mission is to search for potential biological habitable zones. The Phoenix lander is scheduled to touch down on the northern ice-rich polar region known as the Vastitas Borealis. The mission represents the first attempt to actually touch and analyse Martian water in the form of buried ice. The spacecraft will investigate whether frozen water near the Martian surface might periodically melt enough to sustain a habitable zone for primitive microbes.

If Phoenix lands successfully scientists will have three months to complete their tasks. They will race against the clock to dig for, and analyse, materials before the Martian winter sets in and the solar panels no longer provide enough power to run the vehicle.

During the analysis phase Dr Pike and his team will be based at Mission Control. They will be part of the team operating the microscope station.

The construction of the microscope station is an international collaboration with contributions from the U.S., Switzerland, Demark and the UK. The UK involvement is supported by the Science and Technology Facilities Council.

“This is the first chance since the Beagle mission that the UK will be able to help explore the surface of Mars. It is great to have the resources and the people at Imperial to enable us to take part in this mission,” said Dr Pike.

Colin Smith | alfa
Further information:
http://www.imperial.ac.uk

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>