Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists ponder plant life on extrasolar Earthlike planets

20.06.2007
When we think of extrasolar Earth-like planets, the first tendency is to imagine weird creatures like Jar Jar Binks, Chewbacca, and, if those are not bizarre enough, maybe even the pointy-eared Vulcan, Spock, of Star Trek fame.

But scientists seeking clues to life on extrasolar planets are studying various biosignatures found in the light spectrum leaking out to Earth to speculate on something more basic and essential than the musical expertise of Droopy McCool. They are speculating on what kind of photosynthesis might occur on such planets and what the extrasolar plants might look like.

Paint it black

It could be the plants are black, says Robert Blankenship, Ph.D., Lucille P. Markey Distinguished Professor in Arts & Sciences at Washington University in St. Louis. But it all depends on what size and light intensity of star — or sun — the planet feeds off, and the extrasolar planet's atmospheric chemistry.

Plants on extrasolar planets resembling Earth could be as black as these eggplants. Scientists who speculate on plant life and what might constitute photosynthesis "out there" say that plant color depends on the size and light intensity that the planet feeds off from its star, or sun, as well as the extrasolar planet's atmospheric chemistry.

Plants on Earth are green because of chlorophyll, which harnesses the energy of the sun to make sugars for metabolism. But our plants aren't completely efficient — they waste a little bit of light.

"Ideally, what you want is a black molecule that absorbs all of the light," Blankenship said. "There could be another system developed on an extrasolar planet where plants are completely black if the spectrum of light that's available to organisms is different from the light available to organisms on Earth.

"Then, for sure, the plants will have different types of pigments tuned to absorb those wavelengths of light available on the other world."

Blankenship is co-author of two papers recently published in the journal Astrobiology. The papers detail the kinds of clues that researchers are looking for and explore theories of what these other worlds might be like.

Blankenship is part of a NASA working group based at the Jet Propulsion Laboratory called the Virtual Plant Laboratory. He and his colleagues are studying light that comes from stars and extrasolar planets to infer their composition. They can see clues that suggest the presence of water vapor, oxygen or carbon dioxide, for instance. One key biosignature is the existence of disequilibrium — the simultaneous presence of things that should not coexist on a dead world. The presence of methane and oxygen together on an extrasolar planet, for instance, would be a strong smoking gun for the possible existence of life.

Life on the edge

They also are looking into the "red edge" effect. Seen at 700 nanometers out, beyond the limit of normal human vision, this reflectance spectrum is a signature of the fact that there is very intense chlorophyll absorption going on.

A third way to find extrasolar planets is to look for wobbly stars. As a planet — especially a massive planet — goes around the star it causes the star to wobble a bit. The Hubble Space Telescope has found wobbly stars.

NASA has two missions in the works designed to find possible evidence for life on extrasolar planets. One features a space-based instrument that will make measurements in the near infrared region; the other measures longer wavelengths to get good biosignatures for things like methane and oxygen.

Blankenship said that speculation about the natural world of extrasolar planets is at this point speculative, but that it is important to get a handle on what the possibilities are, how things might look, what measurements to make and what experiments to do to conclude whether there is life on another world.

"I think that everyone thinks that there are Earth-like ones out there, but very few have been detected so far," he said. "One of the things that I've learned is that you have to free your mind from the constraints of thinking that life elsewhere has to be like life here."

Energy on any world is critical, he said, and there has to be some system on an extrasolar planet that involves light capture and storage.

"When you consider another world you've got to find that life there depends on photosynthesis in the broad sense, but it's probably not identical to the way that photosynthesis works here," Blankenship said. "You'll need molecules that absorb light that are highly colored, but whether they have the same green colors we know on Earth is unlikely."

Similarly, on Earth life depends on DNA and proteins. But out there?

"I don't think that there is anything magical about DNA in that it has to be the same out there as here," he said. "But there has to be some sort of information-carrying molecule — again, highly unlikely the same as our DNA — that has information coded in a way that allows the ability to transfer information. We've got proteins that do all of the dirty work in the cell in terms of chemistry. You can imagine a different sort of molecule that would do that sort of chemistry. Maybe it would have the same protein backbone with peptide bonds and so forth. But there's no reason to think it would be comprised of the same 20 amino acids that we have on Earth. It's intriguing to speculate, and I think we'll know more when we get more clues."

Tony Fitzpatrick | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>