Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Double explosion challenges theories of ways stars live and die

15.06.2007
A unique discovery of two celestial explosions at exactly the same position in the sky has led astronomers to suggest they have witnessed the death of one of the most massive stars that can exist.

A global collaboration of astronomers led by Queen's University Belfast, teamed up with Japanese supernova hunter, Koichi Itagaki, to report an amazing new discovery in 'Nature' this week (14 June). This is the first time such a double explosion has been observed and challenges our understanding of star-deaths.

In 2004, Koichi Itagaki discovered an exploding star in the galaxy UGC4904 (78 million light years away in the Lynx constellation), which rapidly faded from view in the space of ten days. Never formally announced to the community, Itagaki then found a new, much brighter explosion in the same place only two years later, which he proposed as new supernova. Queen's astronomers Professor Stephen Smartt and Doctor Andrea Pastorello, who are based in the Astrophysics Research Centre at the University, immediately realised the implications of finding two explosions at the same position on the sky.

The astronomers began observing the 2006 supernova (named SN2006jc) with a wide range of large telescopes and analysed Itagaki's images to show the two explosions were in exactly the same place. The most likely explanation for the 2004 explosion was probably an outburst of a very massive star like Eta-Carinae, which was observed to have a similar giant outburst in the 1850s. The 2006 supernova was the final death of the same star.

Professor Smartt is funded by a prestigious EURYI fellowship to study the birth and death of stars. Speaking about the discovery, he said "The supernova was the explosion of a massive star that had lost its outer atmosphere, probably in a series of minor explosions like the one Koichi found in 2004. The star was so massive it probably formed a black hole as it collapsed. This is the first time two explosions of the same star have been found, and it challenges our theories of the way stars live and die. "

Dr. Pastorello said "We knew the 2004 explosion could be a giant outburst of very massive star, and we know that only the most massive stars can produce this type of outburst. So the 2006 supernova must have been the death of the same star, possibly a star 50 to 100 times more massive than the Sun. And it turns out that SN2006jc is a very weird supernova - unusually rich in the chemical element helium which supports our idea of a massive star outburst then death."

Dr. Pastorello used UK telescopes on La Palma (the Liverpool Telescope, and William Herschel Telescope), in a combined European and Asian effort to monitor the energetics of SN2006jc. He showed that the exploding star must have been a Wolf-Rayet star, which are the carbon-oxygen remains of originally very high mass stars.

Although this is the first time two such explosions have been found to be coincident, they could be more frequent than currently thought. The future Pan-STARRS project, a new telescope with the world's largest digital camera which can survey the whole sky once a week could search for these peculiar supernovae. Queen's is a partner in the Pan-STARRS science team and hope to use it to understand how the most massive stars in the Universe die.

The Science and Technology Facilities Council funds UK research in astronomy and access to telescopes such as the William Herschel Telescope.

Lisa Mitchell | alfa
Further information:
http://www.qub.ac.uk

More articles from Physics and Astronomy:

nachricht New quantum phenomena in graphene superlattices
19.09.2017 | Graphene Flagship

nachricht Solar wind impacts on giant 'space hurricanes' may affect satellite safety
19.09.2017 | Embry-Riddle Aeronautical University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>