Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA's FUSE Satellite Catches Collision of Titans

30.05.2007
Using NASA’s Far Ultraviolet Spectroscopic Explorer (FUSE) satellite and ground-based telescopes, astronomers have determined, for the first time, the properties of a rare, extremely massive, and young binary star system.

The system, known as LH54-425, is located in the Large Magellanic Cloud, a satellite galaxy of our Milky Way. The binary consists of two O-stars, the most massive and luminous types of stars in the Universe.

Spectra obtained by Georgia State University astronomer Stephen Williams at the 1.5-meter (4.9 foot) telescope at the Cerro Tololo Inter-American Observatory in Chile show that the two stars contain about 62 and 37 times the mass of our Sun. “The stars are so close to each other -- about one-sixth the average Earth-Sun distance -- that they orbit around a common center of mass every 2.25 days,” says Williams’ colleague Douglas Gies of Georgia State University, Atlanta. With a combined mass of about 100 suns, the system is one the most extreme binaries known. The stars are probably less than 3 million years old.

Each star blows off a powerful stellar wind, and FUSE’s observations have provided the first details of what happens when the two supersonic winds collide. The wind collision zone wraps around the smaller star and produces a curved surface of superheated gases that emit X-rays and far-ultraviolet radiation. FUSE is ideal for these measurements because the lines that best indicate the properties of stellar winds show up in the far ultraviolet part of the spectrum, where FUSE is most sensitive.

FUSE project scientist George Sonneborn of NASA Goddard Space Flight Center, Greenbelt, Md., is presenting these results today in a poster at the spring 2007 American Astronomical Society meeting in Honolulu, Hawaii.

The more massive star is shedding material at a rate of 500 trillion tons per second (about 400 times greater than the rate the sun loses mass through the solar wind), with a speed of 5.4 million miles per hour. The smaller star is ejecting mass at about one-tenth the rate of its sibling. The mass loss rate of both stars is consistent with other single stars having the same temperature and luminosity.

As the stars age and swell in size, they will begin to transfer substantial amounts of mass to each other. This process could begin in a million years. The stars are orbiting so close to each other that they are likely to merge as they evolve, producing a single extremely massive star like the more massive member of the Eta Carinae binary system. Eta Carinae is one of the most massive and luminous stars in the Milky Way Galaxy, with perhaps 100 solar masses.

“The merger of two massive stars to make a single super star of over 80 suns could lead to an object like Eta Carinae, which might have looked like LH54-425 one million years ago,” says Sonneborn. “Finding stars this massive so early in their life is very rare. These results expand our understanding of the nature of very massive binaries, which was not well understood. The system will eventually produce a very energetic supernova.”

“These stars are evolving in the blink of an eye compared to the sun, which has looked pretty much the same for over 4 billion years,” adds Rosina Iping of the Catholic University, Washington and NASA Goddard, leader of the team that observed LH54-425 with FUSE. “But this binary looks totally different from Eta Carinae even though there is maybe only one million years difference in age. These massive stars zoom through their life cycle really fast. Will this binary system produce something like Eta Carinae? We don’t know.”

Launched in 1999, FUSE is a NASA Explorer mission developed in cooperation with the French and Canadian space agencies by Johns Hopkins University, University of Colorado, and University of California, Berkeley. NASA’s Goddard Space Flight Center, Greenbelt, Md., manages the program.

Bob Naeye | EurekAlert!
Further information:
http://www.nasa.gov/centers/goddard/news/topstory/2007/fuse_titans.html

More articles from Physics and Astronomy:

nachricht When helium behaves like a black hole
22.03.2017 | University of Vermont

nachricht Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars
22.03.2017 | International Centre for Radio Astronomy Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>