Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Probing the inner secrets of multi-layer carbon nanotubes

19.04.2007
Researchers at the University of Surrey have shown for the first time that knowing the structure of the surface layer of a multi-layer carbon nanotube is not enough to predict its electronic properties.

The contribution of inner layers is crucial, and this has serious implications when it particularly comes to fabricating electronic devices such as transistors and molecular interconnects. The work reported in Nano Letters (DOI: 10.1021/nl070072p) addresses essential issues related to the electronic properties of carbon nanotubes, as an understanding of their behaviour at the atomic level is required to fully exploit the tremendous opportunities that these systems could offer in the development of practical nanoscale devices.

Single wall carbon nanotubes can be regarded as individual sheets (one atom thick) of graphite which are wrapped up to form tubes. It is the diameter of the tube and the degree of helicity in this wrapping which determine the electronic properties. Different configurations can result in the tube behaving either as a metallic conductor or as a semiconductor, and this theoretically-predicted relationship between the structure and electronic properties has been confirmed using scanning tunnelling microscopy.

It is also possible to form multi-wall nanotubes comprising several tubes, one inside another (like layers of an onion, or a set of Russion dolls). Whereas single-walled carbon nanotubes have been researched and well characterised for many years now, less is known about the multi-wall tubes. How strong is the electrical coupling between layers? How does the helicity of the inner layers affect electrical conduction of the multi-wall tube?

The experiments carried out at the University of Surrey used scanning tunnelling microscopy of double-walled carbon nanotubes to demonstrate an explicit correlation between the helicity of the constituent tubes, their electronic coupling and the overall electronic structure. Cristina Giusca, the lead author of the paper said: “The work is of fundamental importance to the carbon community as it shows the first evidence for a direct correlation between the electronic properties of multiwall carbon nanotubes and the diameter and chiral indices (helicity) of the inner shells”.

Professor Ravi Silva, who leads the Advanced Technology Institute at the University of Surrey, indicated that “This is a fine example of the cutting edge research undertaken at the Institute which combines the very best in fundamental research with sound theoretical backing. The work is of crucial importance to all of us conducting research in carbon nanotubes and other forms of quantum transport studies in 1D structures which clearly highlights the importance of the electronic interaction between adjacent layers, which were previously considered to be less important. This work will add new vigour to those examining the use of carbon nanotubes for interconnects in the IC industry. Having only metallic carbon nanotubes may now not be necessary in the design of interconnect wires between semiconductors if multi-walled nanotubes are to be used for this application.”

Stuart Miller | alfa
Further information:
http://www.surrey.ac.uk
http://portal.surrey.ac.uk/portal/page?_pageid=799,1458814&_dad=portal&_schema=PORTAL

More articles from Physics and Astronomy:

nachricht Gamma rays will reach beyond the limits of light
23.10.2017 | Chalmers University of Technology

nachricht Creation of coherent states in molecules by incoherent electrons
23.10.2017 | Tata Institute of Fundamental Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>