Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dying Sun-like stars leave whirlpools in their wake

17.04.2007
Astronomers based at Jodrell Bank Observatory have found evidence that giant whirlpools form in the wake of stars as they move through clouds in interstellar space. The discovery will be presented by Dr Chris Wareing at the Royal Astronomical Society’s National Astronomy Meeting in Preston on 17th April.

Dr Wareing and his colleagues used the COBRA supercomputer to simulate in three-dimensions the movement of a dying star through surrounding interstellar gas. At the end of their life, Sun-sized stars lose their grip on their outer layers and as much as half of their mass drifts off into space.

The computer simulation modelled the collision between material given off by the star and the interstellar gas. It showed that a shockwave forms ahead of the dying star and giant eddies and whirlpools develop in the tail of material behind the star, similar to those seen in the wake of boats on open water. The group have now backed up these predictions with observations of the planetary nebula Sharpless 2-188 taken as part of the IPHAS (Isaac Newton Telescope Photometric H alpha Survey of the Northern Galactic Plane).

The central star of Sharpless 2-188 is 850 light years away and it is travelling at 125 kilometres per second across the sky. Observations show a strong brightening in the direction in which the star is moving and faint material stretching away in the opposite direction. Dr Wareing believes that the bright structures in the arc observed ahead of Sharpless 2-188 are the bowshock instabilities revealed in his simulations, which will form whirlpools as they spiral past the star downstream to the tail.

"These vortices can improve the mixing of the stellar material back into interstellar space, benefiting the next cycle of star formation. The turbulent whirlpools have an inherent spin, or angular momentum, which is an essential ingredient for the formation of the next generation of stars." said Dr Wareing who developed the computer model during his PhD and is now using it to understand the fate of our Sun.

Dying stars eject both gas and dust into space. The dust will coalesce into planets around later generations of stars. The gas contains carbon, necessary for life and produced inside stars. How the carbon, other gas and dust are ejected from the dying star is not well understood. The whirlpools in space can play an important role in mixing these essential ingredients into the interstellar gas from which further stars and planets will form.

IPHAS

IPHAS is a major survey of the Northern Galactic Plane being carried out with the 2.5-metre Isaac Newton Telescope (INT) in La Palma. The IPHAS survey began taking data with the INT Wide Field Camera in 2003 with the goal of imaging the entire northern galactic plane in the latitude range -5°

Anita Heward | alfa
Further information:
http://www.iphas.org/
http://astro.ic.ac.uk/Research/Halpha/North/index.shtml

More articles from Physics and Astronomy:

nachricht X-ray photoelectron spectroscopy under real ambient pressure conditions
28.06.2017 | National Institutes of Natural Sciences

nachricht New photoacoustic technique detects gases at parts-per-quadrillion level
28.06.2017 | Brown University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>