Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dying Sun-like stars leave whirlpools in their wake

17.04.2007
Astronomers based at Jodrell Bank Observatory have found evidence that giant whirlpools form in the wake of stars as they move through clouds in interstellar space. The discovery will be presented by Dr Chris Wareing at the Royal Astronomical Society’s National Astronomy Meeting in Preston on 17th April.

Dr Wareing and his colleagues used the COBRA supercomputer to simulate in three-dimensions the movement of a dying star through surrounding interstellar gas. At the end of their life, Sun-sized stars lose their grip on their outer layers and as much as half of their mass drifts off into space.

The computer simulation modelled the collision between material given off by the star and the interstellar gas. It showed that a shockwave forms ahead of the dying star and giant eddies and whirlpools develop in the tail of material behind the star, similar to those seen in the wake of boats on open water. The group have now backed up these predictions with observations of the planetary nebula Sharpless 2-188 taken as part of the IPHAS (Isaac Newton Telescope Photometric H alpha Survey of the Northern Galactic Plane).

The central star of Sharpless 2-188 is 850 light years away and it is travelling at 125 kilometres per second across the sky. Observations show a strong brightening in the direction in which the star is moving and faint material stretching away in the opposite direction. Dr Wareing believes that the bright structures in the arc observed ahead of Sharpless 2-188 are the bowshock instabilities revealed in his simulations, which will form whirlpools as they spiral past the star downstream to the tail.

"These vortices can improve the mixing of the stellar material back into interstellar space, benefiting the next cycle of star formation. The turbulent whirlpools have an inherent spin, or angular momentum, which is an essential ingredient for the formation of the next generation of stars." said Dr Wareing who developed the computer model during his PhD and is now using it to understand the fate of our Sun.

Dying stars eject both gas and dust into space. The dust will coalesce into planets around later generations of stars. The gas contains carbon, necessary for life and produced inside stars. How the carbon, other gas and dust are ejected from the dying star is not well understood. The whirlpools in space can play an important role in mixing these essential ingredients into the interstellar gas from which further stars and planets will form.

IPHAS

IPHAS is a major survey of the Northern Galactic Plane being carried out with the 2.5-metre Isaac Newton Telescope (INT) in La Palma. The IPHAS survey began taking data with the INT Wide Field Camera in 2003 with the goal of imaging the entire northern galactic plane in the latitude range -5°

Anita Heward | alfa
Further information:
http://www.iphas.org/
http://astro.ic.ac.uk/Research/Halpha/North/index.shtml

More articles from Physics and Astronomy:

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

nachricht New functional principle to generate the „third harmonic“
16.02.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>