Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Manchester scientist helps bring Sunshine to the big screen

27.03.2007
A new $45m British-made science fiction film is being unveiled this week - and a physicist from The University of Manchester has played an important role in bringing it to the big screen.

Dr Brian Cox, who can usually be found investigating how the universe was formed at the Centre for European Nuclear Research (CERN) in Switzerland, has been working with Sunshine scriptwriter and University of Manchester old boy Alex Garland (The Beach) and director Danny Boyle (Trainspotting and 28 Days Later).

Oldham-born Dr Cox has been acting as scientific advisor to Boyle and Garland to ensure the dramatic storyline retains some degree of plausibility and isn't simply a far-fetched flight of fantasy.

He was also on hand to give the cast and crew a better understanding of advanced physics and worked intensively with Cillian Murphy, who plays Capa, the ship's hero physicist.

Previously a member of 90s pop act D:Ream, while still in the group Dr Cox was studying for his PhD at The University of Manchester. He eventually left the band to finish it and went on to become a Royal Society University Research Fellow based in the High Energy Physics group within The University's School of Physics and Astronomy.

Filmed at the 3 Mills Studio in London's East End, Sunshine shuns the usual Hollywood stereotype of physicists being ageing crazy frizzy-haired blokes, as in Back to the Future or Dr Strangelove.

Lead character Capa is described as being around 30 and handsome - and in a recent interview with The Guardian, Boyle even likened him to Dr Cox.

Sunshine - on general release from April 5 - is set 50 years in the future. The sun is dying and the earth is in permanent winter.

Capa is the physicist in an eight-strong Asian-American team of astronauts who are 16 months into a mission to reignite the sun with a huge nuclear bomb. Ultimately, it is left to him and his knowledge of physics, to save the planet.

Part of Cox's role was to come up with a plausible explanation of why the sun is dying well ahead of schedule in the film. It will expire eventually but not for another five billion years or so.

The explanation offered in the film is that a so-called ‘Q ball' has got itself lodged in the sun - although Cox admits that our own sun is not dense enough and it would fly straight through. The hypothetical Q ball would eat through normal matter, ripping apart the Sun's neutrons and protons.

It's not yet know whether Q balls actually exist but Dr Cox says that CERN are planning to search for them using their £4bn atom-smashing Large Hadron Collider (LHC), which is due to be switched on later this year.

"The science is extremely sound in the film," explains Cox. “You can tell Alex Garland is a fan of science as well as a science fiction fan. There were a few edges we ironed out but basically it was the back story rather than the plot that my expertise was needed for."

On the official website for the film, Boyle comments that they have tried to obey the rules of physics and make it as real as possible, "but in the end you have to abandon certain elements and just go for what is dramatically effective."

Dr Cox is a leading researcher on the LHC - a massive project involving 10,000 researchers and based at CERN, which is the world's largest particle physics centre.

The 39-year-old is working with an 11-nation team that is building detectors to pick up particles such as the as-yet-undetected Higgs boson - the so-called ‘God particle' which could help to explain why matter has mass.

The LHC represents the biggest scientific experiment of all time, and will collide tiny beams of protons with the aim of recreating conditions in the Universe less than a billionth of a second after the Big Bang.

A special preview screening of Sunshine will be held at The Cornerhouse on Oxford Road, Manchester, on Tuesday March 27 at 8pm. Members of the cast and crew - including Dr Cox - will be present and will take part in a question and answer session after the film. For more information please ring The Cornerhouse on 0161 200 1500.

Jon Keighren | alfa
Further information:
http://www.manchester.ac.uk/eps
http://www.sunshinethemovie.co.uk

More articles from Physics and Astronomy:

nachricht First Juno science results supported by University of Leicester's Jupiter 'forecast'
26.05.2017 | University of Leicester

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>