Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

STEREO panoramic images improve solar storm tracking

05.03.2007
The latest panoramic images from NASA’s twin STEREO (Solar Terrestrial Relations Observatory) spacecraft enable scientists to track solar storms from the sun to the Earth for the first time.

“The new view from the STEREO spacecraft will greatly improve our ability to forecast the arrival time of severe space weather,” said Dr Russell Howard of the Naval Research Laboratory, Washington, the Principal Investigator of STEREO’s Sun-Earth Connection Coronal and Heliospheric Investigation (SECCHI). “Previous imagery did not show the front of a solar disturbance as it travelled towards Earth, so we had to make estimates of when the storm would arrive. These estimates were uncertain by a day or so. With STEREO, we can track the front from the sun all the way to Earth, and forecast its arrival within a couple of hours.”

The panoramic views are created by combining images from the SECCHI suite of instruments, including the Heliospheric Imager on both spacecraft – built in the UK by the University of Birmingham and CCLRC’s Rutherford Appleton Laboratory.

Professor Keith Mason, CEO from the Particle Physics and Astronomy Research Council (PPARC) said, “Despite frequent observations over the last decade many questions remain unanswered about the nature of the Sun-Earth relationship and the way in which solar disturbances travel away from the sun. These new panoramic images illustrate the relationship from an entirely new perspective.”

The instruments on board the STEREO spacecraft allow scientists to track a type of solar disturbance called a Coronal Mass Ejection (CME) from its birth at the sun towards Earth. CME’s are violent eruptions of electrically charged gas, called plasma, from the sun’s atmosphere. A CME cloud can contain billions of tons of plasma and move at a million miles per hour. As the CME cloud ploughs through the solar system, it slams into the slower solar wind, a thin stream of plasma constantly blowing from the sun. The collision with the solar wind generates a shock that accelerates electrically charged particles in the solar wind, causing radiation storms that can disrupt sensitive electronics on satellites and cause cancer in unshielded astronauts.

Professor Richard Harrison from CCLRC’s Rutherford Appleton Laboratory is Principal Investigator for the HI instruments. He comments, “The combination of data from the instruments onboard STEREO have meant a dramatic improvement in the level of accuracy of solar storm prediction, illustrating how space research really can impact on operations on Earth.”

A CME cloud is also laced with magnetic fields and CMEs directed our way smash into Earth's magnetic field. If the CME magnetic fields have the proper orientation, they dump energy and particles into Earth's magnetic field, causing magnetic storms that can overload power line equipment. Satellite and utility operators can take precautions to minimize CME damage, but they need an accurate forecast of when the CME will arrive.

Dr Chris Davis, a member of the UK STEREO team from CCLRC’s Rutherford Appleton Laboratory said, ““Every new image from STEREO provides us with further detail about the properties of CME’s forever adding to our knowledge. It is exciting to think that the best images, providing a 3D view of the Sun, are yet to come.”

The two observatories will orbit the sun, one slightly ahead of Earth and one slightly behind, separating from each other by approximately 45 degrees per year. Just as the slight offset between your eyes provides you with depth perception, this separation of the spacecraft will allow them to take 3-D images and particle measurements of the sun. Scientists will use the 3-D views to discover new details about the structure of CME clouds, and to see how that structure evolves as the clouds move through space. The first 3-D views are expected in April.

Gill Ormrod | alfa
Further information:
http://www.pparc.ac.uk
http://www.nasa.gov/mission_pages/stereo/news/panorama_media.html

More articles from Physics and Astronomy:

nachricht Physicists discover that lithium oxide on tokamak walls can improve plasma performance
22.05.2017 | DOE/Princeton Plasma Physics Laboratory

nachricht Experts explain origins of topographic relief on Earth, Mars and Titan
22.05.2017 | City College of New York

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>