Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

STEREO panoramic images improve solar storm tracking

05.03.2007
The latest panoramic images from NASA’s twin STEREO (Solar Terrestrial Relations Observatory) spacecraft enable scientists to track solar storms from the sun to the Earth for the first time.

“The new view from the STEREO spacecraft will greatly improve our ability to forecast the arrival time of severe space weather,” said Dr Russell Howard of the Naval Research Laboratory, Washington, the Principal Investigator of STEREO’s Sun-Earth Connection Coronal and Heliospheric Investigation (SECCHI). “Previous imagery did not show the front of a solar disturbance as it travelled towards Earth, so we had to make estimates of when the storm would arrive. These estimates were uncertain by a day or so. With STEREO, we can track the front from the sun all the way to Earth, and forecast its arrival within a couple of hours.”

The panoramic views are created by combining images from the SECCHI suite of instruments, including the Heliospheric Imager on both spacecraft – built in the UK by the University of Birmingham and CCLRC’s Rutherford Appleton Laboratory.

Professor Keith Mason, CEO from the Particle Physics and Astronomy Research Council (PPARC) said, “Despite frequent observations over the last decade many questions remain unanswered about the nature of the Sun-Earth relationship and the way in which solar disturbances travel away from the sun. These new panoramic images illustrate the relationship from an entirely new perspective.”

The instruments on board the STEREO spacecraft allow scientists to track a type of solar disturbance called a Coronal Mass Ejection (CME) from its birth at the sun towards Earth. CME’s are violent eruptions of electrically charged gas, called plasma, from the sun’s atmosphere. A CME cloud can contain billions of tons of plasma and move at a million miles per hour. As the CME cloud ploughs through the solar system, it slams into the slower solar wind, a thin stream of plasma constantly blowing from the sun. The collision with the solar wind generates a shock that accelerates electrically charged particles in the solar wind, causing radiation storms that can disrupt sensitive electronics on satellites and cause cancer in unshielded astronauts.

Professor Richard Harrison from CCLRC’s Rutherford Appleton Laboratory is Principal Investigator for the HI instruments. He comments, “The combination of data from the instruments onboard STEREO have meant a dramatic improvement in the level of accuracy of solar storm prediction, illustrating how space research really can impact on operations on Earth.”

A CME cloud is also laced with magnetic fields and CMEs directed our way smash into Earth's magnetic field. If the CME magnetic fields have the proper orientation, they dump energy and particles into Earth's magnetic field, causing magnetic storms that can overload power line equipment. Satellite and utility operators can take precautions to minimize CME damage, but they need an accurate forecast of when the CME will arrive.

Dr Chris Davis, a member of the UK STEREO team from CCLRC’s Rutherford Appleton Laboratory said, ““Every new image from STEREO provides us with further detail about the properties of CME’s forever adding to our knowledge. It is exciting to think that the best images, providing a 3D view of the Sun, are yet to come.”

The two observatories will orbit the sun, one slightly ahead of Earth and one slightly behind, separating from each other by approximately 45 degrees per year. Just as the slight offset between your eyes provides you with depth perception, this separation of the spacecraft will allow them to take 3-D images and particle measurements of the sun. Scientists will use the 3-D views to discover new details about the structure of CME clouds, and to see how that structure evolves as the clouds move through space. The first 3-D views are expected in April.

Gill Ormrod | alfa
Further information:
http://www.pparc.ac.uk
http://www.nasa.gov/mission_pages/stereo/news/panorama_media.html

More articles from Physics and Astronomy:

nachricht Water without windows: Capturing water vapor inside an electron microscope
13.12.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

nachricht Columbia engineers create artificial graphene in a nanofabricated semiconductor structure
13.12.2017 | Columbia University School of Engineering and Applied Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>