Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High-frequency cryocooler is tiny, cold and efficient

19.02.2007
A new cryogenic refrigerator has been demonstrated at the National Institute of Standards and Technology (NIST) that operates at twice the usual frequency, achieving a long-sought combination of small size, rapid cooling, low temperatures and high efficiency.

The cryocoooler could be used to chill instruments for space and military applications, and is a significant step toward even smaller, higher-frequency versions for integrated circuits and microelectromechanical (MEM) systems.

The new cryocooler, described in the current issue of Applied Physics Letters,* is a "pulse tube" design that uses oscillating helium gas to transport heat, achieving very cold temperatures (223 degrees C or -370 degrees F) in a matter of minutes without any cold moving parts. With cold components about 70 by 10 millimeters in size, the device operates at 120 cycles per second (hertz), compared to the usual 60 Hz, which enables use of a much smaller oscillator to generate gas flow, as well as faster cool-down. Because changing the size of one component can negatively affect others, the researchers used a NIST-developed computer model to find the optimal combination of frequency, pressure and component geometry.

The new cryocooler is as efficient as the low-frequency version because it uses a higher average pressure and a finer screen mesh in the regenerator—a stainless steel tube packed with screening that provides a large surface area for transfer of heat between the gas and the steel. This is a key part of the cooling process. The helium gas is pre-cooled by the screen in the regenerator before entering the pulse tube, where the gas is expanded and chilled. The cold gas reverses its direction and carries heat away from the object to be cooled before it enters the regenerator again and picks up stored heat from the screen. Then it is compressed again for a new cycle. Compared to a prototype NIST mini-cryocooler flown on a space shuttle in 2001, the new version is about the same size but gets much colder.

Pulse tube cryocoolers are more durable than conventional (Stirling) cryocoolers typically used in applications where small size is essential. These applications include cooling infrared sensors in space-based instruments used to measure temperature and composition of the atmosphere and oceans for studies of global warming and weather forecasting, and cooling night-vision sensors for tanks, helicopters, and airplanes. With continued work, the NIST researchers hope to increase operating frequencies to 1,000 Hz, which could enable development of chip-scale cryocoolers. Many difficult technical challenges need to be overcome to attain frequencies that high while maintaining high efficiency, such as the design of regenerators with pores just 10 micrometers in diameters.

Laura Ost | EurekAlert!
Further information:
http://www.nist.gov

More articles from Physics and Astronomy:

nachricht Two dimensional circuit with magnetic quasi-particles
22.01.2018 | Technische Universität Kaiserslautern

nachricht Meteoritic stardust unlocks timing of supernova dust formation
19.01.2018 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>