Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Changing gold

Gold is not as noble and stable as it has been previously thought. This is the conclusion of an international team of researchers from Germany, France and Sweden who came to the ESRF to study the structure of this material at high pressure. They present their results in Physical Review Letters.

The uniqueness of gold and its appreciation as a valuable throughout history is closely related to its exceptional stability to chemical reactions and extreme pressures and temperatures. Gold was considered as a synonym of immovability and constancy (remember the wedding rings!). Indeed, at ambient pressure gold has been known to remain stable in a cubic crystalline phase to at least 180 GPa (one million eight hundred thousand atmospheres).

Scientists from the Bayerisches Geoinstitut and the University of Heidelberg (Germany), together with researchers from Sweden and the ESRF (France) have detected for the first time a phase transformation in gold using the synchrotron. The experiments have shown that at pressures above ~240 GPa gold adopts an hexagonal-close packed structure.

In order to carry out their experiments, scientists used two beamlines of the ESRF combined with a new instrument at the Bayerisches Geoinstitut. The sample was placed inside a diamond anvil cell, which was then electrically heated externally. This allowed them to study gold at the pressures of the Earth’s core, that is, at a depth of 5500 km from the surface.

Advances in high-pressure techniques require standards which are applicable at a multimegabar pressure range. Large pressure and temperature stability of the cubic gold phase and its high isothermal compressibility make gold an ideal material to be used as a pressure marker at high pressure- high temperature experiments at pressures above 100 GPa. The pressure-induced phase transition found in gold at pressure above 240 GPa places a “natural” limit on the application of cubic gold as a standard.

These results confirm the theoretical predictions about the phase changes in gold. “These new experimental and theoretical results remind us that there is no “absolute” unchangeable material, and the noblest of all metals, gold, is not an exception from this rule”, explains Leonid Dubrovinsky, main researcher.

Montserrat Capellas | alfa
Further information:

More articles from Physics and Astronomy:

nachricht Light-driven atomic rotations excite magnetic waves
24.10.2016 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>