Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanomicroscopy reveals the collective transport of gold atoms in real-time

07.02.2007
Researchers at Delft University of Technology used a High Resolution Electron Microscope to observe in real-time the collective transportation of gold atoms in a thin layer.

This research illustrates the rapid progress that is currently being made by real-time nano-microscopy. Within 5 years this research area should be able to take the step from the laboratory to realistic conditions, and this will open up a wealth of possibilities for industry and the medical world.

In this research project, which was conducted by Delft University of Technology's Kavli Institute of Nanoscience, a small group of gold atoms were placed on a gold surface. The Delft researchers then used a High Resolution Electron Microscope (HREM) to show in real-time how this group of atoms collectively sank into the underlying layer of atoms (see the short film at http://virtuallab.nano.tudelft.nl/movies/audis/) and then became arranged in the shape of a surface dislocation (which is an extra row of atoms that is 'squeezed' between the other rows of atoms). At a later stage, the dislocation disappears, as if a string of beads has been pulled away lengthwise. According to Professor Henny Zandbergen, this is the first time that such a phenomenon has been observed in real-time. This was possible due to the progress that has been made in recent years in image-forming techniques and the processing of the data.

Atomic calculations validated and certified the observation mechanism: for this, Delft University of Technology worked in close cooperation with Princeton University (USA). The research results were published in Physical Review Letters. According to Professor Zandbergen, the observable manner in which the atoms arranged themselves in the underlying layer and the movement of the dislocation (see film) is, in principle, an attractive way of transporting materials from the upper layer to the underlying layer and also within the underlying layer. Normally - and as comprehensively detailed in scientific literature - before an atom can 'hop' from one layer to the underlying layer, certain energy barriers exist. But such barriers do not exist with this manner of transport. The findings of this TU Delft research project clearly indicate that when people are modelling the (industrial) production of thin layers, they must also consider this type of collective processes.

Zandbergen's research is a typical example of the rapid progress currently being made by nano-microscopy, or nano-imaging. Nano-microscopy – the observation of individual atoms or molecules - is becoming increasingly more accurate and faster. It is now possible to observe the movements of atoms in real-time, and this allows the position of the atoms to be determined with great precision (approximately 0.01 nm). So far, this has primarily been observed under laboratory conditions. But soon live nano-imaging will take the next step to realistic and industrial conditions: real-life, real-time nano-imaging.

This will open up a wealth of possibilities for all kinds of medical and industrial applications, especially for those that involve a combination of various nano-imaging technologies and conventional optical microscopy. This will allow information about the different length scales to be combined. It will then be possible to follow the biological processes very realistically, and this will also provide many excellent opportunities for industry. One example is catalysis research. Real-life, real-time nano-imaging allows for closer observation of the catalysis processes, with the logical consequences of this being better catalysts and more efficient chemical processes. In the Netherlands, Delft University of Technology, Leiden University and the microscope manufacturing company FEI, are conducting joint research in nano-microscopy.

Frank Nuijens | EurekAlert!
Further information:
http://www.tudelft.nl

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA eyes Pineapple Express soaking California

24.02.2017 | Earth Sciences

New gene for atrazine resistance identified in waterhemp

24.02.2017 | Agricultural and Forestry Science

New Mechanisms of Gene Inactivation may prevent Aging and Cancer

24.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>