Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

SOHO prepares for comet McNaught

12.01.2007
Recently, sky watchers in the Northern Hemisphere have been enjoying the sight of Comet McNaught in the twilight sky. Now, solar physicists using the ESA-NASA SOHO spacecraft are getting ready for their view. For four days in January, the comet will pass through SOHO's line of sight and could be the brightest comet SOHO has ever seen.

As Comet McNaught heads towards its closest approach to the Sun on 12 January 2007, it will disappear from view for earthbound observers, becoming lost in the Sun's glare. That's where SOHO comes in. Poised in space between the Earth and Sun, SOHO ceaselessly watches the Sun and objects that pass nearby.

Comet McNaught will pass within a fifth of the distance between the Earth and the Sun. As the comet approaches the Sun, the amount of dust and gas it releases will increase dramatically, causing the comet to become extremely bright. "This might become the brightest comet SOHO has ever seen," says Bernhard Fleck, SOHO Project Scientist.

The material ejected from the comet forms the tails. There are two tails, the dust tail and the gas – or ion – tail. The dust tail is the brighter and is formed by the intense sunlight forcing dust particles away from the comet. The solar wind, a constant stream of material flowing from the Sun, drags ionized gas from the comet to create the ion-tail.

Researchers Karl Battams and Jeff Morrill at the Naval Research Laboratory in Washington, DC are planning colour filter observations of these two comet tails. "Close to the Sun the ion and dust tails move apart, a phenomenon that is often difficult to observe from the Earth. By measuring the ion-tail angle we can get information about the solar wind speed very close to the Sun," says Morrill.

Comet McNaught is moving through space on an inclined orbit. This will carry it above the Sun’s north pole and across the Sun’s equator, a place where there is a reversal of the magnetic properties of the solar wind. Crossing this boundary could cause the comet’s ion-tail to fragment. Observations of such events are generally very rare, so SOHO's images of comet McNaught constitute an exciting opportunity for scientists.

After SOHO's work is finished, the comet will emerge from the Sun’s glare and become visible again to earthbound sky watchers in the Southern Hemisphere. "It could become a really bright object in the twilight sky," says Fleck. The ghostly veils of a bright comet are amongst the most spectacular of sights that can be seen in the night sky.

Between 12 and 15 January, Comet McNaught will not be visible from Earth but everyone can still track the comet's passage near the Sun by looking at the SOHO images at http://soho.esac.esa.int/hotshots/.

Bernhard Fleck | alfa
Further information:
http://www.esa.int/esaSC/SEMMCRSVYVE_index_0.html

More articles from Physics and Astronomy:

nachricht Water without windows: Capturing water vapor inside an electron microscope
13.12.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

nachricht Columbia engineers create artificial graphene in a nanofabricated semiconductor structure
13.12.2017 | Columbia University School of Engineering and Applied Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>