Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

BC physicists transmit visible light through miniature cable

10.01.2007
Invention heralds advances in solar technology, optical computing

Physicists at Boston College have beamed visible light through a cable hundreds of times smaller than a human hair, an achievement they anticipate will lead to advances in solar power and optical computing.

The discovery, details of which appear in the Jan. 8 issue of the journal Applied Physics Letters, defies a key principle that holds that light cannot pass through a hole much smaller than its wavelength. In fact, the BC team forced visible light, which has a wavelength of between 380-750 nanometers, to travel down a cable whose diameter is smaller than even the low end of that range.

The researchers say their achievement opens the door to a wide array of new technologies, from high-efficiency, inexpensive solar cells to microscopic light-based switching devices for use in optical computing. The technology could even be used to help some blind people see, the physicists say.

The advance builds upon the researchers' earlier invention of a microscopic antenna that captures visible light in much the same way radio antennae capture radio waves – a discovery they announced in 2004. This time, the BC physicists designed and fabricated a tiny version of the coaxial cable – the Information Age workhorse that carries telephone and Internet service along with hundreds of television and radio channels into millions of homes and businesses around the world.

"Our coax works just like the one in your house, except now for visible light," says Jakub Rybczynski, a research scientist in the Boston College Physics Department and the lead author of the APL article.

Coaxial cables are typically made up of a core wire surrounded by a layer of insulation, which in turn is surrounded by another metal sheath. This structure encloses energy and lets the cable transmit electromagnetic signals with wavelengths much larger than the diameter of the cable itself.

With this design in mind, the physicists developed what they called a "nanocoax" – a carbon nanotube-based coaxial cable with a diameter of about 300 nanometers. By comparison, the human hair is several hundred times wider.

The physicists designed their nanocoax so that the center wire protruded at one end, forming a light antenna. The other end was blunt, allowing the scientists to measure the light received by the antenna and transmitted through the medium.

The researchers were able to transmit both red and green light into the nanocoax and out the other end, indicating that the cable can carry a broad spectrum of visible light.

"The beauty of our nanocoax is that it lets us squeeze visible light through very small geometric dimensions. It also allows us to transmit light over a distance that is at least 10 times its wavelength," says BC Physics Prof. Kris Kempa, a co-author of the article.

Greg Frost | EurekAlert!
Further information:
http://www.bc.edu

More articles from Physics and Astronomy:

nachricht Breaking the optical bandwidth record of stable pulsed lasers
24.01.2017 | Institut national de la recherche scientifique - INRS

nachricht European XFEL prepares for user operation: Researchers can hand in first proposals for experiments
24.01.2017 | European XFEL GmbH

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>