Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

‘Atom-chips’ research wins multi-million pound funding

21.12.2006
Physicists at The University of Nottingham are to use refrigerators made from light that can cool atoms to the lowest temperature in the Universe to develop the next generation of ultra-small electronic devices.

The academics, in collaboration with colleagues at The University of Birmingham, have been awarded almost £6 million from the Engineering and Physical Sciences Research Council (EPSRC) for the creation of a new Midlands Ultracold Atom Research Centre.

Academics at the centre will use state-of-the-art laser beams to cool atoms to a few billionths of a degree above absolute zero — which is around 10 billion times colder than temperatures in the Arctic. Cooling the atoms to these temperatures causes them to slow down, changing their behaviour and enabling scientists to harness this area of quantum physics for a range of novel uses.

One such use, to be developed at Nottingham, is the creation of revolutionary ‘atom-chips’, which are similar to micro-chips used in electronic devices such as laptops but work by using magnets to guide entire cold atoms — rather than electrons — around air tracks above the chip like microscopic magnetic levitation trains.

The ‘atom-chips’ can then be used to build high-precision sensors into a range of electronic devices. These could have many applications, for example, in high-precision navigation, underground mapping and oil prospecting and high-performance computers.

Professor Mark Fromhold, of Nottingham’s School of Physics and Astronomy, said: “Although the atoms are so cold, they have built in quantum heat shields whose performance is equivalent to keeping a snowball frozen at the centre of the sun.”

Colleagues at Birmingham will work on the same area of quantum physics but will concentrate on atoms moving in ‘optical lattices’, crystals made from light.

The funding for the Midlands Ultracold Atom Research Centre comes from the third round of Science and Innovation Awards from the EPSRC, which is funding research projects across the UK to the tune of £31 million.

The money will be used to fund lecturers, postdoctoral fellows, research students, new technical posts, equipment and laboratory refurbishment.

Science and Innovation Awards were introduced by the EPSRC in 2005 to support strategic areas of research that are particularly at risk. In a changing research landscape, as undergraduates choose new options, more traditional core subjects are encountering declining numbers of entrants. This in turn affects the base of academic staff in the UK’s universities, which impacts on the nation’s capacity to produce the well-trained people and research leaders of the future.

Dr Randal Richards, Interim Chief Executive of EPSRC, said: “The latest Science and Innovation Awards announced today are a component of EPSRC’s activities to ensure a future healthy and vibrant research base for the UK. These awards are made in partnership with the Funding Councils of England, Scotland and Wales and are focused on ensuring that strategic research areas will have the necessary leadership capacity to ensure that future generations of researchers are available in the UK.”

The projects will create new centres of research activity in their respective fields in existing research environments that are encouraging and supportive of innovative approaches. These centres will have the critical mass to make major research progress. They will aim to stimulate research in the UK and international community and, where appropriate, to encourage innovation in UK business and industry. They will increase the output of trained scientists in their respective science areas.

The Midlands Ultracold Atoms Research Centre is the first phase in a drive to create a new Midlands Physics Alliance involving the two universities and The University of Warwick, which will bring together leaders in the field of physics with overseas collaborators and develop a new programme of courses and training for postdoctoral students across all the institutions.

Emma Thorne | alfa
Further information:
http://www.nottingham.ac.uk

More articles from Physics and Astronomy:

nachricht First Juno science results supported by University of Leicester's Jupiter 'forecast'
26.05.2017 | University of Leicester

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>