Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

‘Atom-chips’ research wins multi-million pound funding

21.12.2006
Physicists at The University of Nottingham are to use refrigerators made from light that can cool atoms to the lowest temperature in the Universe to develop the next generation of ultra-small electronic devices.

The academics, in collaboration with colleagues at The University of Birmingham, have been awarded almost £6 million from the Engineering and Physical Sciences Research Council (EPSRC) for the creation of a new Midlands Ultracold Atom Research Centre.

Academics at the centre will use state-of-the-art laser beams to cool atoms to a few billionths of a degree above absolute zero — which is around 10 billion times colder than temperatures in the Arctic. Cooling the atoms to these temperatures causes them to slow down, changing their behaviour and enabling scientists to harness this area of quantum physics for a range of novel uses.

One such use, to be developed at Nottingham, is the creation of revolutionary ‘atom-chips’, which are similar to micro-chips used in electronic devices such as laptops but work by using magnets to guide entire cold atoms — rather than electrons — around air tracks above the chip like microscopic magnetic levitation trains.

The ‘atom-chips’ can then be used to build high-precision sensors into a range of electronic devices. These could have many applications, for example, in high-precision navigation, underground mapping and oil prospecting and high-performance computers.

Professor Mark Fromhold, of Nottingham’s School of Physics and Astronomy, said: “Although the atoms are so cold, they have built in quantum heat shields whose performance is equivalent to keeping a snowball frozen at the centre of the sun.”

Colleagues at Birmingham will work on the same area of quantum physics but will concentrate on atoms moving in ‘optical lattices’, crystals made from light.

The funding for the Midlands Ultracold Atom Research Centre comes from the third round of Science and Innovation Awards from the EPSRC, which is funding research projects across the UK to the tune of £31 million.

The money will be used to fund lecturers, postdoctoral fellows, research students, new technical posts, equipment and laboratory refurbishment.

Science and Innovation Awards were introduced by the EPSRC in 2005 to support strategic areas of research that are particularly at risk. In a changing research landscape, as undergraduates choose new options, more traditional core subjects are encountering declining numbers of entrants. This in turn affects the base of academic staff in the UK’s universities, which impacts on the nation’s capacity to produce the well-trained people and research leaders of the future.

Dr Randal Richards, Interim Chief Executive of EPSRC, said: “The latest Science and Innovation Awards announced today are a component of EPSRC’s activities to ensure a future healthy and vibrant research base for the UK. These awards are made in partnership with the Funding Councils of England, Scotland and Wales and are focused on ensuring that strategic research areas will have the necessary leadership capacity to ensure that future generations of researchers are available in the UK.”

The projects will create new centres of research activity in their respective fields in existing research environments that are encouraging and supportive of innovative approaches. These centres will have the critical mass to make major research progress. They will aim to stimulate research in the UK and international community and, where appropriate, to encourage innovation in UK business and industry. They will increase the output of trained scientists in their respective science areas.

The Midlands Ultracold Atoms Research Centre is the first phase in a drive to create a new Midlands Physics Alliance involving the two universities and The University of Warwick, which will bring together leaders in the field of physics with overseas collaborators and develop a new programme of courses and training for postdoctoral students across all the institutions.

Emma Thorne | alfa
Further information:
http://www.nottingham.ac.uk

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>