Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists propose alternate model for plume on enceladus

18.12.2006
What's causing all the commotion on Enceladus?

Last year, when the Cassini spacecraft discovered an enormous plume erupting on Enceladus, one of Saturn's moons, scientists speculated that liquid water lay at shallow depths beneath the icy surface.

Now, as reported in the Dec. 15 issue of the journal Science, researchers have proposed an alternate model to account for this spectacular plume.

"With a diameter of only 300 miles, Enceladus is a tiny moon; it would fit easily between Los Angeles and San Francisco," said Susan Kieffer, a geology professor and planetary scientist at the University of Illinois at Urbana-Champaign, and lead author of the Science paper. "This tiny satellite should be cold and inactive, like our own moon. But it isn't."

The surface of Enceladus is composed of water ice with traces of carbon dioxide. Part of this surface does appear old and cratered like Earth's moon, Kieffer said. "The south polar region, however, is geologically active, with many surface features, indicating current activity."

Kieffer, who holds a Charles R. Walgreen Jr. Chair at the U. of I., has studied geysers and volcanoes on Earth; on Io, a satellite of Jupiter; and on Triton, a satellite of Neptune.

Instruments on the Cassini spacecraft revealed a gigantic plume of gas, water vapor and ice particles erupting from Enceladus' surface. Some of the ice escapes the moon's feeble grasp and replenishes a ring of ice particles around Saturn, called the "E ring."

Initial reports speculated that chambers of liquid water lay close to the moon's surface and erupted in a giant geyser. The water would be near freezing, so scientists dubbed the model "Cold Faithful," after the familiar, but hotter, Old Faithful geyser in Yellowstone National Park.

"A problem with this model," Kieffer said, "is that 10 percent of the plume consists of the gases carbon dioxide, nitrogen and methane. You might get a carbon dioxide-driven liquid geyser there, but you can't put this much nitrogen and methane into liquid water at the low pressures found inside Enceladus."

Nitrogen and methane are nearly insoluble in liquid water, but highly soluble in frozen water – in an ice phase called clathrate. When clathrate is exposed to a vacuum, the gas molecules burst out, ripping the ice lattice to shreds and carrying the fragments away.

Kieffer and colleagues have proposed an alternate model to explain the plume on Enceladus. The gases in the plume, they propose, are dissolved in a reservoir of clathrate under the water ice cap in the south polar region. The clathrate model allows an environment that would be 80 to 100 degrees Celsius colder than liquid water, with a "Frigid Faithful" plume emanating from clathrates, rather than from liquid water reservoirs.

"Exposed to near-vacuum conditions by fractures at the south pole, the clathrates decompose violently, spewing out nitrogen, methane and carbon dioxide gases, and ice particles; as well as leaving fracture walls coated with water ice," said Kieffer, who is also a professor in the university's Center for Advanced Study, one of the highest forms of campus recognition. "Some ice particles and ice coatings evaporate to produce the water vapor observed with the other gases," she said.

Active tectonic processes at the south pole cause continuous formation of cracks in the ice, through which many separate vents create a plume. The total discharge is comparable to that of Old Faithful, but the plume is enormously bigger because it is erupting at very low gravity into the near vacuum of space.

"We propose that cracks in Enceladus' ice cap may be opening and closing continuously, producing the spectacular plume we see reaching high above Enceladus' surface," Kieffer said. "Even if conditions are as cold as our model suggests, there is no problem launching ice particles into Saturn's E-ring."

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Physics and Astronomy:

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

nachricht Physicists discover mechanism behind granular capillary effect
24.05.2017 | University of Cologne

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>