Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists propose alternate model for plume on enceladus

18.12.2006
What's causing all the commotion on Enceladus?

Last year, when the Cassini spacecraft discovered an enormous plume erupting on Enceladus, one of Saturn's moons, scientists speculated that liquid water lay at shallow depths beneath the icy surface.

Now, as reported in the Dec. 15 issue of the journal Science, researchers have proposed an alternate model to account for this spectacular plume.

"With a diameter of only 300 miles, Enceladus is a tiny moon; it would fit easily between Los Angeles and San Francisco," said Susan Kieffer, a geology professor and planetary scientist at the University of Illinois at Urbana-Champaign, and lead author of the Science paper. "This tiny satellite should be cold and inactive, like our own moon. But it isn't."

The surface of Enceladus is composed of water ice with traces of carbon dioxide. Part of this surface does appear old and cratered like Earth's moon, Kieffer said. "The south polar region, however, is geologically active, with many surface features, indicating current activity."

Kieffer, who holds a Charles R. Walgreen Jr. Chair at the U. of I., has studied geysers and volcanoes on Earth; on Io, a satellite of Jupiter; and on Triton, a satellite of Neptune.

Instruments on the Cassini spacecraft revealed a gigantic plume of gas, water vapor and ice particles erupting from Enceladus' surface. Some of the ice escapes the moon's feeble grasp and replenishes a ring of ice particles around Saturn, called the "E ring."

Initial reports speculated that chambers of liquid water lay close to the moon's surface and erupted in a giant geyser. The water would be near freezing, so scientists dubbed the model "Cold Faithful," after the familiar, but hotter, Old Faithful geyser in Yellowstone National Park.

"A problem with this model," Kieffer said, "is that 10 percent of the plume consists of the gases carbon dioxide, nitrogen and methane. You might get a carbon dioxide-driven liquid geyser there, but you can't put this much nitrogen and methane into liquid water at the low pressures found inside Enceladus."

Nitrogen and methane are nearly insoluble in liquid water, but highly soluble in frozen water – in an ice phase called clathrate. When clathrate is exposed to a vacuum, the gas molecules burst out, ripping the ice lattice to shreds and carrying the fragments away.

Kieffer and colleagues have proposed an alternate model to explain the plume on Enceladus. The gases in the plume, they propose, are dissolved in a reservoir of clathrate under the water ice cap in the south polar region. The clathrate model allows an environment that would be 80 to 100 degrees Celsius colder than liquid water, with a "Frigid Faithful" plume emanating from clathrates, rather than from liquid water reservoirs.

"Exposed to near-vacuum conditions by fractures at the south pole, the clathrates decompose violently, spewing out nitrogen, methane and carbon dioxide gases, and ice particles; as well as leaving fracture walls coated with water ice," said Kieffer, who is also a professor in the university's Center for Advanced Study, one of the highest forms of campus recognition. "Some ice particles and ice coatings evaporate to produce the water vapor observed with the other gases," she said.

Active tectonic processes at the south pole cause continuous formation of cracks in the ice, through which many separate vents create a plume. The total discharge is comparable to that of Old Faithful, but the plume is enormously bigger because it is erupting at very low gravity into the near vacuum of space.

"We propose that cracks in Enceladus' ice cap may be opening and closing continuously, producing the spectacular plume we see reaching high above Enceladus' surface," Kieffer said. "Even if conditions are as cold as our model suggests, there is no problem launching ice particles into Saturn's E-ring."

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Physics and Astronomy:

nachricht Meteoritic stardust unlocks timing of supernova dust formation
19.01.2018 | Carnegie Institution for Science

nachricht Artificial agent designs quantum experiments
19.01.2018 | Universität Innsbruck

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>