Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCR-led research team detects 'top quark,' a basic constituent of matter

15.12.2006
Subatomic particle appeared without its antimatter partner, says physicist Ann Heinson, co-leader of group of 50 scientists

A group of 50 international physicists, led by UC Riverside’s Ann Heinson, has detected for the first time a subatomic particle, the top quark, produced without the simultaneous production of its antimatter partner – an extremely rare event. The discovery of the single top quark could help scientists better explain how the universe works and how objects acquire their mass, thereby assisting human understanding of the fundamental nature of the universe.

The heaviest known elementary particle, the top quark has the same mass as a gold atom and is one of the fundamental building blocks of nature. Understood to be an ingredient of the nuclear soup just after the Big Bang, today the top quark does not occur naturally but must be created experimentally in a high-energy particle accelerator, an instrument capable of recreating the conditions of the early universe.

“We’ve been looking for single top quarks for 12 years, and until now no one had seen them,” said Heinson, a research physicist in the Department of Physics and Astronomy. “The detection of single top quarks – we detected 62 in total – will allow us to study the properties of top quarks in ways not accessible before. We are now able to study how the top quark is produced and how it decays. Do these happen as theory says they should" Are new particles affecting what we see" We're now better positioned to answer such questions.”

The detection of the top quark on its own was the outcome of a time-consuming process involving hundreds of scientists who constitute the “DZero” collaboration, a team of experimenters studying the top quark in particle collisions.

For its part, Heinson’s team first collected data from collision experiments conducted between 2002 and 2005 at the Tevatron Collider, the world’s highest energy particle accelerator that is comprised of a four-mile long underground ring at the Department of Energy’s Fermi National Accelerator Laboratory in Batavia, Ill. The collisions recorded were those between protons and antiprotons (the antimatter counterparts of protons).

Next, Heinson and her colleagues analyzed the record of high-energy collisions using powerful computers that helped the researchers determine which types of particles resulted from the collisions.

When a proton smashes head-on into an antiproton at nearly the speed of light, the collision occasionally produces a top quark. This heavy, unstable particle exists, however, for only a tiny fraction of a second before it decays into lighter particles, thereby complicating its detection. Physicists therefore must look at the top quark's descendents to identify it.

“We detected the top quark using the electronic signature of its decay products,” said Heinson, the primary author of a research paper on the single top quark’s detection that her group will submit to Physical Review Letters. “We measured the position of charged particles using a silicon vertex detector, which is an instrument – first encountered by the particles after the collision – that can precisely reconstruct the trajectories of charged particles. Since theory predicts single top quark production, we knew what to look for. It was extremely difficult, however, to find.”

In the near future, Heinson’s team plans to analyze more data generated by the Tevatron and also work with a new particle accelerator – the Large Hadron Collider – being built on the outskirts of Geneva, Switzerland, and scheduled to begin operation at the end of 2007.

Iqbal Pittalwala | EurekAlert!
Further information:
http://www.ucr.edu

More articles from Physics and Astronomy:

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

nachricht New survey hints at exotic origin for the Cold Spot
26.04.2017 | Royal Astronomical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>