Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Spacecraft fleet zeroing in on Martian water reserves

The discovery of bright deposits on Mars, announced today by NASA, could indicate that liquid water has recently flowed on a few locations on the planet. The new data help planetary scientists involved with several missions orbiting the Red Planet focus their quest to understand the Martian water cycle.

It has been an established fact for several years now that water exists on Mars. However, the big question is how much of it – if any – is in liquid form. The newly discovered deposits were identified by comparing different images of the same area taken by NASA's Mars Global Surveyor (MOC camera), over a period of few years. The images suggest that water may have flowed there sometime within the past seven years.

This gives planetary scientists an excellent target for follow-up work. Yet, just because water appears to have flowed does not automatically mean that underground reservoirs of liquid water are present.

ESA’s Mars Express has found large reservoirs of water underground using its radar experiment MARSIS. All are frozen, with the largest in Mars's polar regions. Such frozen underground lakes might be driven to temporarily thaw and flow across the surface by changes in temperature, caused by changes in illumination from the Sun or, possibly, by local variations in the underground pressure.

In addition, much water is locked into so-called hydrated minerals that have been found by the OMEGA instrument on ESA's Mars Express.

The new observations demonstrate the crucial need for continuous monitoring of Mars. Only by studying the same areas over and over again will any temporary processes by revealed. In an extremely lucky case, instruments may even catch the water flowing.

Planetary scientists on both sides of the Atlantic will now be focusing their efforts on combing this region for more evidence of water. Scientists responsible for the MARSIS instrument on Mars Express are looking ahead to see when the ESA spacecraft will next bring the region into view.

MARSIS can probe as deeply as 5 kilometres below the surface, and it is complementary to SHARAD, the radar flown on NASA Mars Reconnaissance Orbiter (MRO). The latter will be help to detect possible water reservoirs contained in the first kilometre, just below the surface of the discovery area.

In addition, other instruments such as cameras and spectrometers will collect more valuable information about this exciting area on Mars. In this way, scientists will continue to piece together the fascinating behaviour of Mars, both in its past and its present.

Agustin Chicarro | alfa
Further information:

More articles from Physics and Astronomy:

nachricht Sharpening the X-ray view of the nanocosm
23.03.2018 | Changchun Institute of Optics, Fine Mechanics and Physics

nachricht Drug or duplicate?
23.03.2018 | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>