Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers discover two new planets, both among the hottest ever

28.09.2006
Astronomers have discovered two new planets outside our solar system, both extremely close to their stars and thus among the hottest ever found.

A University of Florida astronomer is among more than three dozen astronomers who found the new large planets, announced today at the Transiting Extrasolar Planets Workshop at the Max Planck Institute for Astronomy in Heidelberg, Germany.

Stephen Kane, a UF postdoctoral associate, said he and his colleagues pinpointed the planets by detecting the slight dimming of starlight that occurs when the planets pass in front of their stars. Of about 200 planets discovered so far, the new planets are only the 13th and 14th to be found using this technique, called the transit method. But that’s likely to change quickly as the United Kingdom-based effort to discover planets with the transit method gathers steam, Kane said.

“We can expect these two planets to be the first in a wave of a whole lot of these new types of planets,” he said.

Known as “Hot Jupiters” because of their Jupiter-like size and temperature, the new planets are so close to their stars that they complete their orbit in a mere two and two-and-one-half days, respectively. That compares to 88 days for Mercury, the planet with the fastest orbit nearest the sun in our solar system. The very close orbit also means that the new planets are hotter than Mercury, which has a surface temperature of 752 degrees Fahrenheit. The planets are estimated to have a temperature of at least 3,272 degrees.

There is also evidence that the solar radiation from the stars is so intense that it is whipping away their atmospheres. “Hot Jupiters are assumed to have a significantly reduced lifetime due to their proximity to the star,” Kane said.

Most planets outside our solar system have been found using the radial velocity method, which measures the gravitational wobble in the star induced by the orbiting planet. The transit method would seem at first to be impractical because it requires a lucky break: The orbital plane of the planets under observation must be aligned toward Earth so astronomers can see the starlight dim as the planets pass.

The astronomers who discovered the two new planets dealt with this complication through, in Kane’s words, “brute force.” The astronomers surveyed millions of stars using twin telescopes snapping photos of the southern and northern skies from La Palma in Spain’s Canary Islands and Sutherland, South Africa. Each telescope is equipped with eight wide-angle cameras, each of which has a field of view of eight degrees, which comprises a relatively large chunk of the sky. By comparison, the full moon comprises about half a degree.

The work was done through UK’s leading planet detection program, a consortium of eight universities called SuperWASP, or Wide Angle Search for Planets.

Kane’s role in the research was to help pick out from the vast numbers of photographed stars the most likely candidates for further investigation. The job was a difficult one because planets passing in front of stars only slightly diminish the starlight, dimming it by only about 1 percent for just a few hours. Kane also led the research on the prototype for SuperWASP, and has worked on both SuperWASP telescopes, among other efforts.

“We have computer programs which are able to search all of these light curves from the stars and see if there’s something in them which looks like the star has become fainter for a short period, but it’s a complicated task,” Kane said.

After SuperWASP identified the tiny dips in starlight caused when the planets passed in front of their stars, a French-built instrument detected a slight wobble in each star’s motion as the planets passed around them, confirming the existence of the planets.

The planets are located in the constellations Andromeda and Delphinius, respectively. The Andromeda planet is more than 1,000 light years away, while the Delphinius planet is 500 light years away.

Both of the new planets are far too hot to support life. But Kane said their discovery adds to growing knowledge about how planets form, which should help astronomers understand and zero in on Earth-like planets.

“Once we understand planet formation, we’ll understand a lot more about how terrestrial planets form as well,” he said.

Stephen Kane | EurekAlert!
Further information:
http://www.astro.ufl.edu
http://star-www.st-and.ac.uk/~acc4/Transit.jpg

More articles from Physics and Astronomy:

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

nachricht New functional principle to generate the „third harmonic“
16.02.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>