Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers discover two new planets, both among the hottest ever

28.09.2006
Astronomers have discovered two new planets outside our solar system, both extremely close to their stars and thus among the hottest ever found.

A University of Florida astronomer is among more than three dozen astronomers who found the new large planets, announced today at the Transiting Extrasolar Planets Workshop at the Max Planck Institute for Astronomy in Heidelberg, Germany.

Stephen Kane, a UF postdoctoral associate, said he and his colleagues pinpointed the planets by detecting the slight dimming of starlight that occurs when the planets pass in front of their stars. Of about 200 planets discovered so far, the new planets are only the 13th and 14th to be found using this technique, called the transit method. But that’s likely to change quickly as the United Kingdom-based effort to discover planets with the transit method gathers steam, Kane said.

“We can expect these two planets to be the first in a wave of a whole lot of these new types of planets,” he said.

Known as “Hot Jupiters” because of their Jupiter-like size and temperature, the new planets are so close to their stars that they complete their orbit in a mere two and two-and-one-half days, respectively. That compares to 88 days for Mercury, the planet with the fastest orbit nearest the sun in our solar system. The very close orbit also means that the new planets are hotter than Mercury, which has a surface temperature of 752 degrees Fahrenheit. The planets are estimated to have a temperature of at least 3,272 degrees.

There is also evidence that the solar radiation from the stars is so intense that it is whipping away their atmospheres. “Hot Jupiters are assumed to have a significantly reduced lifetime due to their proximity to the star,” Kane said.

Most planets outside our solar system have been found using the radial velocity method, which measures the gravitational wobble in the star induced by the orbiting planet. The transit method would seem at first to be impractical because it requires a lucky break: The orbital plane of the planets under observation must be aligned toward Earth so astronomers can see the starlight dim as the planets pass.

The astronomers who discovered the two new planets dealt with this complication through, in Kane’s words, “brute force.” The astronomers surveyed millions of stars using twin telescopes snapping photos of the southern and northern skies from La Palma in Spain’s Canary Islands and Sutherland, South Africa. Each telescope is equipped with eight wide-angle cameras, each of which has a field of view of eight degrees, which comprises a relatively large chunk of the sky. By comparison, the full moon comprises about half a degree.

The work was done through UK’s leading planet detection program, a consortium of eight universities called SuperWASP, or Wide Angle Search for Planets.

Kane’s role in the research was to help pick out from the vast numbers of photographed stars the most likely candidates for further investigation. The job was a difficult one because planets passing in front of stars only slightly diminish the starlight, dimming it by only about 1 percent for just a few hours. Kane also led the research on the prototype for SuperWASP, and has worked on both SuperWASP telescopes, among other efforts.

“We have computer programs which are able to search all of these light curves from the stars and see if there’s something in them which looks like the star has become fainter for a short period, but it’s a complicated task,” Kane said.

After SuperWASP identified the tiny dips in starlight caused when the planets passed in front of their stars, a French-built instrument detected a slight wobble in each star’s motion as the planets passed around them, confirming the existence of the planets.

The planets are located in the constellations Andromeda and Delphinius, respectively. The Andromeda planet is more than 1,000 light years away, while the Delphinius planet is 500 light years away.

Both of the new planets are far too hot to support life. But Kane said their discovery adds to growing knowledge about how planets form, which should help astronomers understand and zero in on Earth-like planets.

“Once we understand planet formation, we’ll understand a lot more about how terrestrial planets form as well,” he said.

Stephen Kane | EurekAlert!
Further information:
http://www.astro.ufl.edu
http://star-www.st-and.ac.uk/~acc4/Transit.jpg

More articles from Physics and Astronomy:

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>