Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UA Physicists Invent 'QuIET'- Single Molecule Transistors

31.08.2006
University of Arizona physicists have discovered how to turn single molecules into working transistors. It's a breakthrough needed to make the next-generation of remarkably tiny, powerful computers that nanotechnologists dream of.

They have applied for a patent on their device, called Quantum Interference Effect Transistor, nicknamed "QuIET." The American Chemical Society publication, "Nano Letters," has published the researchers' article about it online at Nano Letters. The research is planned as the cover feature in the print edition in November.

A transistor is a device that switches electrical current on and off, just like a valve turns water on and off in a garden hose. Industry now uses transistors as small as 65 nanometers. The UA physicists propose making transistors as small as a single nanometer, or one billionth of a meter.

"All transistors in current technology, and almost all proposed transistors, regulate current flow by raising and lowering an energy barrier," University of Arizona physicist Charles A. Stafford said. "Using electricity to raise and lower energy barriers has worked for a century of switches, but that approach is about to hit the wall."

Transistors can't shrink much smaller than 25 nanometers, or 1/40,000 the width of a pinhead, because scaling down further creates intractable energy problems, Stafford said. Even if it were possible to build an ultra-advanced laptop computer with molecule-sized transistors using current transistor technology, it would take a city's worth of electricity to run the laptop, and the thing would get so hot it would probably vaporize.

Stafford, UA physicist Sumit Mazumdar and David Cardamone, who received his doctorate from UA in 2005, began thinking about the problem of next-generation transistor technology three years ago. They realized that quantum mechanics can solve the problem of how to regulate current flow in a single-molecule transistor that would work at room temperature.

"Our approach is a little more finesse than brute force," Cardamone said. "We don't put up a wall to stop current. It's just that we can regulate how electron waves combine to turn the transistor on or off."

The simplest molecule they propose for a transistor is benzene, a ring-like molecule. They propose attaching two electrical leads to the ring to create two alternate paths through which current can flow.

They also propose attaching a third lead opposite one of the electrical leads. Other researchers have succeeded in attaching two contacts to a molecule this small, but attaching the third is the trick -- and the point. The third lead is what turns the device on and off, the "valve."

"In classical physics, the two currents through each arm of the ring would just add," Stafford said. "But quantum mechanically, the two electron waves interfere with each other destructively, so no current gets through. That's the 'off' state of the transistor."

The transistor is turned on by changing the phase of the waves so they don't destructively interfere with each other, opening up addiitonal paths through the third lead.

"It took a while to go from the idea of how this could work to developing realistic calculations of this kind of system," Stafford said. "We were able to do the simplest kind of quantum chemical calculations which neglect interactions between different electrons within a few weeks. But it took some time to put in all the electron interactions that demonstrate this really is a very robust device."

According to the Semiconductor Research Corp. it typically takes a dozen years for a new idea to go from initial scientific publication to commercial technological application, Stafford noted.

"That means if the computer industry is to continue its recent pace in making smaller-scale computers, we should have had this idea yesterday, " Cardamone said.

Why all this effort to make incomprehensibly small computers? Why expend so much brainpower on nanocomputing?

More computing power will result in more realistic simulations, whether you're a scientist modeling global warming or supernovae explosions, or an entertainment industry animator creating believable emotion in a simulated human face, Stafford said.

Nanocomputers could have a major impact in medicine, Cardamone said. "These machines could operate in solution, in vivo. There already are clinical trials of nanoparticles to deliver medicinal drugs. Imagine how much more powerful those little nanoparticles or nanorobots would be if they could count, or do simple computation. With our transistors packed at maximum density, you could put a microprocessor as powerful as the top-of-the-line workstation on the back of an E. coli."

"Have you seen the movie, Fantastic Voyage?" Stafford asked. A nano-sized surgical team journeyed through a human body in the 1966 sci-fi flick. That's a different story, but with a similar theme.

"We're not futurists at all and can't predict it, but imagine that you could make an artificial intelligence, that you could have this little submarine that goes inside somebody's arteries and capillaries to repair them," Stafford said.

Lori Stiles | University of Arizona
Further information:
http://www.arizona.edu

More articles from Physics and Astronomy:

nachricht APEX takes a glimpse into the heart of darkness
25.05.2018 | Max-Planck-Institut für Radioastronomie

nachricht First chip-scale broadband optical system that can sense molecules in the mid-IR
24.05.2018 | Columbia University School of Engineering and Applied Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>