Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reversed growth reveals secrets of carbon nanotubes

28.08.2006
Researchers at the Advanced Technology Institute, University of Surrey have reversed the growth of carbon nanotubes from catalysts, using electron beam irradiation in an electron microscope. High resolution imaging of this reverse process led to the conclusion that carbon nanotube growth is essentially a surface-driven process.

Carbon nanotubes – tubes formed from a repeating arrangement of carbon atoms with diameter of the order of a billionth of a meter – have remarkable mechanical, electronic and optical properties. Their potential applications range from ultra-strong ropes to ultra-small transistors, as well as field-emission displays, biosensors and optical switches. Unfortunately it is not yet possible to produce carbon nanotubes on a large scale with controlled properties (such as diameter and chirality – the degree of spiral in the arrangement of the carbon atoms). One important method for producing tubes is to use small particles of a metal such as nickel, which at high temperatures catalyse the decomposition of a carbon-containing gas forming carbon nanotubes which ‘grow’ on each metal particle. This process has not yet been fully understood, but recent work at the University of Surrey sheds new light on the interaction between the catalysts and the carbon atoms involved in the growth.

“There is still a hot debate about whether carbon nanotubes grow from catalysts as a result of carbon diffusing through or on the surface of the catalyst”, said Dr Vlad Stolojan, who led the research team. “This is mainly because the result of the growth process can only be observed at room temperature, after the process is completed. Through analysing the physics behind the controlled growth reversal that we observed, we concluded that the steady-state part of the growth process is surface-driven and demonstrated that the carbon nearest to the catalyst’s surface is highly mobile”.

A carbon nanotube, with its Ni catalyst at the top, shrinks in a controlled manner under electron beam irradiation. After ~7 minutes of irradiation at 75A/cm2, ~60nm length of the carbon nanotube has been consumed and the holey carbon film supporting the tube can be seen (arrow). The measurement of the reversal rate and the high-resolution analysis of the crystalline structure reveal that the growth process of carbon nanotubes from catalysts is a surface-driven process.

Stolojan and his co-workers studied the reversal process with high spatial resolution, in a transmission electron microscope, and have shown that the catalyst remains attached to the nanotube throughout the irradiation sequence, whilst an equivalent of 1 carbon atom is consumed per every nickel atom in the catalyst. By considering the effects of heating and irradiation, they have discovered that the carbon atoms at the catalyst surface are very easily removed (also confirmed by theoretical simulations), followed by a rapid rearrangement of the nanotube’s atoms around the catalyst. They have also discovered that changes in the nanotube’s growth direction are linked to a sudden rotation of the catalyst.

The observed controlled growth reversal under the high-energy electron irradiation will allow for controlling the height of individual nanotubes within patterned arrays, thus offering three-dimensional control of nanotube arrays for field-emission applications.

“The ability to observe the behaviour of the catalyst during the growth-reversal of the nanotube is exciting, as it allows the reverse-engineering of the steady-state growth process. Ultimately, this can help establish the relationship between the catalyst’s crystalline structure and the chirality of the resulting nanotube; the control of the chirality being the true ‘holy grail’ of carbon nanotube growers.” said Prof Ravi Silva, the Director of the Advanced Technology Institute, University of Surrey from the UK.

Stuart Miller | alfa
Further information:
http://www.surrey.ac.uk

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>