Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reversed growth reveals secrets of carbon nanotubes

28.08.2006
Researchers at the Advanced Technology Institute, University of Surrey have reversed the growth of carbon nanotubes from catalysts, using electron beam irradiation in an electron microscope. High resolution imaging of this reverse process led to the conclusion that carbon nanotube growth is essentially a surface-driven process.

Carbon nanotubes – tubes formed from a repeating arrangement of carbon atoms with diameter of the order of a billionth of a meter – have remarkable mechanical, electronic and optical properties. Their potential applications range from ultra-strong ropes to ultra-small transistors, as well as field-emission displays, biosensors and optical switches. Unfortunately it is not yet possible to produce carbon nanotubes on a large scale with controlled properties (such as diameter and chirality – the degree of spiral in the arrangement of the carbon atoms). One important method for producing tubes is to use small particles of a metal such as nickel, which at high temperatures catalyse the decomposition of a carbon-containing gas forming carbon nanotubes which ‘grow’ on each metal particle. This process has not yet been fully understood, but recent work at the University of Surrey sheds new light on the interaction between the catalysts and the carbon atoms involved in the growth.

“There is still a hot debate about whether carbon nanotubes grow from catalysts as a result of carbon diffusing through or on the surface of the catalyst”, said Dr Vlad Stolojan, who led the research team. “This is mainly because the result of the growth process can only be observed at room temperature, after the process is completed. Through analysing the physics behind the controlled growth reversal that we observed, we concluded that the steady-state part of the growth process is surface-driven and demonstrated that the carbon nearest to the catalyst’s surface is highly mobile”.

A carbon nanotube, with its Ni catalyst at the top, shrinks in a controlled manner under electron beam irradiation. After ~7 minutes of irradiation at 75A/cm2, ~60nm length of the carbon nanotube has been consumed and the holey carbon film supporting the tube can be seen (arrow). The measurement of the reversal rate and the high-resolution analysis of the crystalline structure reveal that the growth process of carbon nanotubes from catalysts is a surface-driven process.

Stolojan and his co-workers studied the reversal process with high spatial resolution, in a transmission electron microscope, and have shown that the catalyst remains attached to the nanotube throughout the irradiation sequence, whilst an equivalent of 1 carbon atom is consumed per every nickel atom in the catalyst. By considering the effects of heating and irradiation, they have discovered that the carbon atoms at the catalyst surface are very easily removed (also confirmed by theoretical simulations), followed by a rapid rearrangement of the nanotube’s atoms around the catalyst. They have also discovered that changes in the nanotube’s growth direction are linked to a sudden rotation of the catalyst.

The observed controlled growth reversal under the high-energy electron irradiation will allow for controlling the height of individual nanotubes within patterned arrays, thus offering three-dimensional control of nanotube arrays for field-emission applications.

“The ability to observe the behaviour of the catalyst during the growth-reversal of the nanotube is exciting, as it allows the reverse-engineering of the steady-state growth process. Ultimately, this can help establish the relationship between the catalyst’s crystalline structure and the chirality of the resulting nanotube; the control of the chirality being the true ‘holy grail’ of carbon nanotube growers.” said Prof Ravi Silva, the Director of the Advanced Technology Institute, University of Surrey from the UK.

Stuart Miller | alfa
Further information:
http://www.surrey.ac.uk

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>