Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers use supercomputers to study atoms linked to black holes

25.08.2006
Super-hot atoms in space hold the key to an astronomical mystery, and an Ohio State University astronomer is leading an effort to study those atoms here on Earth.

Anil Pradhan, professor of astronomy, and his team have used supercomputers to perform the most precise energy calculations ever made for these atoms and their properties. As a result, astronomers -- in particular, those hunting black holes -- will have a better idea of what they are looking at when they examine faraway space matter using X-ray telescopes.

The results appear in the September issue of the Journal of Physics B: Atomic, Molecular and Optical Physics. And while the paper's subject matter is highly technical, it tells a story that weaves together atomic physics, Einstein's theory of relativity, cutting-edge astronomical observations, and some of the world's fastest supercomputers.

Astronomers have spied seas of super-hot atoms in plasma form, circling the centers of very bright galaxies, called active galactic nuclei. The plasma is thought to be a telltale sign of a black hole; the black hole itself is invisible, but any material spiraling into it should be very hot, and shine brightly with X-rays.

Before anyone can prove definitively whether active galaxies contain black holes, astronomers need to measure the energy levels of the excited atoms in the plasma very precisely, and match the measurements with what they know about atomic physics.

Assuring the accuracy of atomic data doesn't sound like the most exciting job in astronomy, Pradhan admitted -- but it is fundamentally important.

"Most astronomers take it for granted that the atomic data they are referencing are correct -- they have to, in order to interpret their observations," he said.

For 30 years, the professor of astronomy has worked on the problem. The new, high-resolution X-ray data gathered by NASA's Chandra X-ray Observatory and the European Space Agency's X-ray Multi-mirror Mission-Newton satellite spurred him on. Believing that such high-quality observations demanded good atomic data, he and his team -- which is also led by Ohio State senior research scientist Sultana Nahar -- decided to make the most precise atomic calculations possible.

After years of writing computer codes and thousands of hours of computing time at the Ohio Supercomputer Center, they calculated the energy levels of high-temperature atoms ranging from carbon to iron -- the atoms found in these plasmas.

Some of the previously accepted values for these atoms had acknowledged error rates from 30 percent to as high as factors of two or three. With the new calculations reported in this study, the error for all the atoms has been reduced to a few percent.

This means that from now on, when astronomers record X-ray images of objects in space, they will have a much better idea of what atoms make up the material they are looking at, and the physical conditions inside that object.

The atom that most black-hole hunters are interested in is iron, and that's where Einstein's general theory of relativity comes in.

The immense gravity of a black hole should, according to relativity, distort the X-ray signal as seen from Earth, particularly for iron atoms. The signal is a spectrum, and looks like a series of lines, with each atom having its own line. One line in particular, called the iron K-alpha line, appears broadened for X-rays emanating from the center of active galaxies, and it is often cited as a key indication of a black hole.

Thirteen years ago, Pradhan, Nahar, and their colleagues began a study called the Iron Project. Their goal, in part, is to find out why the iron K-alpha line is broadened and what the implications are for X-ray astronomy.

"The most direct observation of a black hole is considered to be the iron K-alpha line," Pradhan said. "So it's very important to find out whether it's been broadened because there is a black hole nearby, or if there is some other cause."

He is hopeful that astronomers will apply his new data to studies of the iron K-alpha line and help solve the mystery.

Coauthors on the paper include Claude J. Zeippen and former Ohio State graduate student Franck Delahaye, both of the Observatoire de Paris.

This work was supported by NASA, the National Science Foundation, and the Ohio Supercomputer Center .

Anil Pradhan | EurekAlert!
Further information:
http://www.osu.edu

More articles from Physics and Astronomy:

nachricht Tune your radio: galaxies sing while forming stars
21.02.2017 | Max-Planck-Institut für Radioastronomie

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>