Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hubble images some of galaxy's dimmest stars

22.08.2006
Survey of nearby globular cluster pushes limits of orbiting observatory

Using the Hubble Space Telescope, astronomers have imaged some of the galaxy's oldest and dimmest stars, offering a rare experimental glimpse of two mysterious star types – tiny, slow burners less than one-tenth the size of our sun and once giant stars that still glow more than 10 billion years after their deaths.

The research appears in this week's issue of the journal Science.

"This project pushed the limits of what even Hubble can do," said study co-author Jay Anderson, a research scientist at Rice University. "These stars can't be reliably detected in a single image. You have to combine a large number of images to find them."

In total, the research team trained Hubble's cameras on the same patch of sky for more than 75 hours, gathering 378 overlapping images. The target was a region of space containing about 1 percent of the globular cluster NGC 6397 – a collection of stars that formed early in our galaxy's history.

"When we look at random stars in the sky they have a variety of ages," Anderson said. "Globular clusters offer unique opportunities for astronomers to study a population of stars that are all the same age. All the stars we see in clusters are ancient, because they were created when the galaxy was forming. They're fossils from the galaxy's earliest days."

There are about 150 globular clusters in our galaxy, and most contain between 100,000 and 1 million stars. While most of the galaxy's stars – including our own sun – orbit the galactic center in the plane of the galaxy, globular clusters predate the flattening of the Milky Way, so they're scattered in a more spherical distribution.

NGC 6397 is one of the nearest clusters to Earth, located just 8,500 light years away. But even at this relatively close astronomical distance, the light from NGC 6397's faintest stars is easily lost in the glare from its brightest stars.

To survey the dimmest objects, Anderson and colleagues relied on computers. Anderson, whose specialty is writing programs to sift through astronomical data, spent months writing and refining software that could examine each Hubble image, pixel by pixel, and find the faintest stars.

The two types of object imaged represent the heavy end and the light end of the stellar mass spectrum.

A star's destiny is determined by its mass. There's a minimum mass that a star must have in order to burn hydrogen, and objects below that threshold cool rapidly and fade away. From the NGC 6397 survey, Anderson and his colleagues identified the smallest visible stars yet seen in a globular cluster, stars less than one-tenth the mass of Earth's sun. This is very near the predicted theoretical threshold, and Anderson said data from the survey will be helpful for verifying and refining theories about the structure and evolution of low-mass stars.

On the other end of the stellar mass spectrum are stars that are significantly larger than the sun. Stars about eight times the mass of the sun burn quickly and die in spectacular planetary nebulae, explosions that spew much of the star's material into space. Upon their final collapse, these stars become white dwarfs, extremely dense objects that radiate heat for billions of years as they slowly fade into darkness. Anderson said that while the brightest – and therefore youngest – white dwarfs have been seen in many clusters, the new survey yielded the first images of the faintest and oldest white dwarfs in an ancient cluster. The brightness of the white dwarfs at this end of the scale can help astronomers find out how long the stars have been cooling. From that, they can better determine the age of the cluster, which in turn can be used to narrow estimates of the lower limit of the age of the universe.

Jade Boyd | EurekAlert!
Further information:
http://www.rice.edu

More articles from Physics and Astronomy:

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>