Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hubble images some of galaxy's dimmest stars

22.08.2006
Survey of nearby globular cluster pushes limits of orbiting observatory

Using the Hubble Space Telescope, astronomers have imaged some of the galaxy's oldest and dimmest stars, offering a rare experimental glimpse of two mysterious star types – tiny, slow burners less than one-tenth the size of our sun and once giant stars that still glow more than 10 billion years after their deaths.

The research appears in this week's issue of the journal Science.

"This project pushed the limits of what even Hubble can do," said study co-author Jay Anderson, a research scientist at Rice University. "These stars can't be reliably detected in a single image. You have to combine a large number of images to find them."

In total, the research team trained Hubble's cameras on the same patch of sky for more than 75 hours, gathering 378 overlapping images. The target was a region of space containing about 1 percent of the globular cluster NGC 6397 – a collection of stars that formed early in our galaxy's history.

"When we look at random stars in the sky they have a variety of ages," Anderson said. "Globular clusters offer unique opportunities for astronomers to study a population of stars that are all the same age. All the stars we see in clusters are ancient, because they were created when the galaxy was forming. They're fossils from the galaxy's earliest days."

There are about 150 globular clusters in our galaxy, and most contain between 100,000 and 1 million stars. While most of the galaxy's stars – including our own sun – orbit the galactic center in the plane of the galaxy, globular clusters predate the flattening of the Milky Way, so they're scattered in a more spherical distribution.

NGC 6397 is one of the nearest clusters to Earth, located just 8,500 light years away. But even at this relatively close astronomical distance, the light from NGC 6397's faintest stars is easily lost in the glare from its brightest stars.

To survey the dimmest objects, Anderson and colleagues relied on computers. Anderson, whose specialty is writing programs to sift through astronomical data, spent months writing and refining software that could examine each Hubble image, pixel by pixel, and find the faintest stars.

The two types of object imaged represent the heavy end and the light end of the stellar mass spectrum.

A star's destiny is determined by its mass. There's a minimum mass that a star must have in order to burn hydrogen, and objects below that threshold cool rapidly and fade away. From the NGC 6397 survey, Anderson and his colleagues identified the smallest visible stars yet seen in a globular cluster, stars less than one-tenth the mass of Earth's sun. This is very near the predicted theoretical threshold, and Anderson said data from the survey will be helpful for verifying and refining theories about the structure and evolution of low-mass stars.

On the other end of the stellar mass spectrum are stars that are significantly larger than the sun. Stars about eight times the mass of the sun burn quickly and die in spectacular planetary nebulae, explosions that spew much of the star's material into space. Upon their final collapse, these stars become white dwarfs, extremely dense objects that radiate heat for billions of years as they slowly fade into darkness. Anderson said that while the brightest – and therefore youngest – white dwarfs have been seen in many clusters, the new survey yielded the first images of the faintest and oldest white dwarfs in an ancient cluster. The brightness of the white dwarfs at this end of the scale can help astronomers find out how long the stars have been cooling. From that, they can better determine the age of the cluster, which in turn can be used to narrow estimates of the lower limit of the age of the universe.

Jade Boyd | EurekAlert!
Further information:
http://www.rice.edu

More articles from Physics and Astronomy:

nachricht Hope to discover sure signs of life on Mars? New research says look for the element vanadium
22.09.2017 | University of Kansas

nachricht Calculating quietness
22.09.2017 | Forschungszentrum MATHEON ECMath

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>